File size: 9,592 Bytes
695e093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import random

import gradio as gr
import networkx as nx

from lib.graph_extract import triplextract, parse_triples
from lib.visualize import create_graph, create_bokeh_plot, create_plotly_plot
from lib.samples import snippets

WORD_LIMIT = 300

def process_text(text, entity_types, predicates, layout_type, visualization_type):
    if not text:
        return None, None, "Please enter some text."

    words = text.split()
    if len(words) > WORD_LIMIT:
        return None, None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}"

    entity_types = [et.strip() for et in entity_types.split(",") if et.strip()]
    predicates = [p.strip() for p in predicates.split(",") if p.strip()]

    if not entity_types:
        return None, None, "Please enter at least one entity type."
    if not predicates:
        return None, None, "Please enter at least one predicate."

    try:
        prediction = triplextract(text, entity_types, predicates)
        if prediction.startswith("Error"):
            return None, None, prediction

        entities, relationships = parse_triples(prediction)

        if not entities and not relationships:
            return None, None, "No entities or relationships found. Try different text or check your input."

        G = create_graph(entities, relationships)

        if visualization_type == 'Bokeh':
            fig = create_bokeh_plot(G, layout_type)
        else:
            fig = create_plotly_plot(G, layout_type)

        output_text = f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}"
        return G, fig, output_text
    except Exception as e:
        print(f"Error in process_text: {str(e)}")
        return None, None, f"An error occurred: {str(e)}"

def update_graph(G, layout_type, visualization_type):
    if G is None:
        return None, "Please process text first."
    
    try:
        if visualization_type == 'Bokeh':
            fig = create_bokeh_plot(G, layout_type)
        else:
            fig = create_plotly_plot(G, layout_type)
        return fig, ""
    except Exception as e:
        print(f"Error in update_graph: {e}")
        return None, f"An error occurred while updating the graph: {str(e)}"

def update_inputs(sample_name):
    sample = snippets[sample_name]
    return sample.text_input, sample.entity_types, sample.predicates

with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
    gr.Markdown("# Knowledge Graph Extractor")
    
    default_sample_name = random.choice(list(snippets.keys()))
    default_sample = snippets[default_sample_name]
    
    with gr.Row():
        with gr.Column(scale=1):
            sample_dropdown = gr.Dropdown(choices=list(snippets.keys()), label="Select Sample", value=default_sample_name)
            input_text = gr.Textbox(label="Input Text", lines=5, value=default_sample.text_input)
            entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types)
            predicates = gr.Textbox(label="Predicates", value=default_sample.predicates)
            layout_type = gr.Dropdown(choices=['spring', 'fruchterman_reingold', 'circular', 'random', 'spectral', 'shell'], 
                                      label="Layout Type", value='spring')
            visualization_type = gr.Radio(choices=['Bokeh', 'Plotly'], label="Visualization Type", value='Bokeh')
            process_btn = gr.Button("Process Text")
        with gr.Column(scale=2):
            output_graph = gr.Plot(label="Knowledge Graph")
            error_message = gr.Textbox(label="Textual Output")

    graph_state = gr.State(None)

    def process_and_update(text, entity_types, predicates, layout_type, visualization_type):
        G, fig, output = process_text(text, entity_types, predicates, layout_type, visualization_type)
        return G, fig, output

    def update_graph_wrapper(G, layout_type, visualization_type):
        if G is not None:
            fig, _ = update_graph(G, layout_type, visualization_type)
            return fig

    sample_dropdown.change(update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates])

    process_btn.click(process_and_update,
                      inputs=[input_text, entity_types, predicates, layout_type, visualization_type],
                      outputs=[graph_state, output_graph, error_message])
    
    layout_type.change(update_graph_wrapper,
                       inputs=[graph_state, layout_type, visualization_type],
                       outputs=[output_graph])
    
    visualization_type.change(update_graph_wrapper,
                              inputs=[graph_state, layout_type, visualization_type],
                              outputs=[output_graph])

if __name__ == "__main__":
    demo.launch(share=True)import random

import gradio as gr
import networkx as nx

from lib.graph_extract import triplextract, parse_triples
from lib.visualize import create_graph, create_bokeh_plot, create_plotly_plot
from lib.samples import snippets

WORD_LIMIT = 300

def process_text(text, entity_types, predicates, layout_type, visualization_type):
    if not text:
        return None, None, "Please enter some text."

    words = text.split()
    if len(words) > WORD_LIMIT:
        return None, None, f"Please limit your input to {WORD_LIMIT} words. Current word count: {len(words)}"

    entity_types = [et.strip() for et in entity_types.split(",") if et.strip()]
    predicates = [p.strip() for p in predicates.split(",") if p.strip()]

    if not entity_types:
        return None, None, "Please enter at least one entity type."
    if not predicates:
        return None, None, "Please enter at least one predicate."

    try:
        prediction = triplextract(text, entity_types, predicates)
        if prediction.startswith("Error"):
            return None, None, prediction

        entities, relationships = parse_triples(prediction)

        if not entities and not relationships:
            return None, None, "No entities or relationships found. Try different text or check your input."

        G = create_graph(entities, relationships)

        if visualization_type == 'Bokeh':
            fig = create_bokeh_plot(G, layout_type)
        else:
            fig = create_plotly_plot(G, layout_type)

        output_text = f"Entities: {entities}\nRelationships: {relationships}\n\nRaw output:\n{prediction}"
        return G, fig, output_text
    except Exception as e:
        print(f"Error in process_text: {str(e)}")
        return None, None, f"An error occurred: {str(e)}"

def update_graph(G, layout_type, visualization_type):
    if G is None:
        return None, "Please process text first."
    
    try:
        if visualization_type == 'Bokeh':
            fig = create_bokeh_plot(G, layout_type)
        else:
            fig = create_plotly_plot(G, layout_type)
        return fig, ""
    except Exception as e:
        print(f"Error in update_graph: {e}")
        return None, f"An error occurred while updating the graph: {str(e)}"

def update_inputs(sample_name):
    sample = snippets[sample_name]
    return sample.text_input, sample.entity_types, sample.predicates

with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
    gr.Markdown("# Knowledge Graph Extractor")
    
    default_sample_name = random.choice(list(snippets.keys()))
    default_sample = snippets[default_sample_name]
    
    with gr.Row():
        with gr.Column(scale=1):
            sample_dropdown = gr.Dropdown(choices=list(snippets.keys()), label="Select Sample", value=default_sample_name)
            input_text = gr.Textbox(label="Input Text", lines=5, value=default_sample.text_input)
            entity_types = gr.Textbox(label="Entity Types", value=default_sample.entity_types)
            predicates = gr.Textbox(label="Predicates", value=default_sample.predicates)
            layout_type = gr.Dropdown(choices=['spring', 'fruchterman_reingold', 'circular', 'random', 'spectral', 'shell'], 
                                      label="Layout Type", value='spring')
            visualization_type = gr.Radio(choices=['Bokeh', 'Plotly'], label="Visualization Type", value='Bokeh')
            process_btn = gr.Button("Process Text")
        with gr.Column(scale=2):
            output_graph = gr.Plot(label="Knowledge Graph")
            error_message = gr.Textbox(label="Textual Output")

    graph_state = gr.State(None)

    def process_and_update(text, entity_types, predicates, layout_type, visualization_type):
        G, fig, output = process_text(text, entity_types, predicates, layout_type, visualization_type)
        return G, fig, output

    def update_graph_wrapper(G, layout_type, visualization_type):
        if G is not None:
            fig, _ = update_graph(G, layout_type, visualization_type)
            return fig

    sample_dropdown.change(update_inputs, inputs=[sample_dropdown], outputs=[input_text, entity_types, predicates])

    process_btn.click(process_and_update,
                      inputs=[input_text, entity_types, predicates, layout_type, visualization_type],
                      outputs=[graph_state, output_graph, error_message])
    
    layout_type.change(update_graph_wrapper,
                       inputs=[graph_state, layout_type, visualization_type],
                       outputs=[output_graph])
    
    visualization_type.change(update_graph_wrapper,
                              inputs=[graph_state, layout_type, visualization_type],
                              outputs=[output_graph])

if __name__ == "__main__":
    demo.launch(share=True)