File size: 8,009 Bytes
d0ba0ce
944017e
02cc2be
72a2744
d0ba0ce
7c95914
d0ba0ce
7c95914
 
 
 
 
 
 
 
d0ba0ce
7c95914
44c0e78
 
 
 
 
668775b
44c0e78
 
 
 
72a2744
47f6195
7c95914
8d705f9
 
807533f
5c42a74
8d705f9
fb0ea79
abc43f8
fb0ea79
807533f
fb0ea79
b41d273
561f7a8
32f029a
fb0ea79
d0ba0ce
894c71a
266d4b2
ae22dfd
d0ba0ce
 
 
a98948f
72a2744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2df9243
7c95914
 
 
72a2744
 
 
7c95914
f9dbffb
7c95914
72a2744
 
 
 
 
 
 
2b04423
d0ba0ce
 
2b04423
7c95914
72a2744
 
 
 
 
 
 
 
dcd9708
72a2744
 
0d3004a
72a2744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5765602
72a2744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0ba0ce
72a2744
 
 
d0ba0ce
 
 
 
72a2744
d0ba0ce
abd1f1b
72a2744
0da8351
d0ba0ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import streamlit as st
from PIL import Image
import time
import streamlit_analytics
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os

# Step 1: Clone the Dataset Repository
repo = Repository(
    local_dir="Private_Book",  # Local directory to clone the repository
    repo_type="dataset",  # Specify that this is a dataset repository
    clone_from="Anne31415/Private_Book",  # Replace with your repository URL
    token=os.environ["HUB_TOKEN"]  # Use the secret token to authenticate
)
repo.git_pull()  # Pull the latest changes (if any)

# Step 2: Load the PDF File
pdf_path = "Private_Book/KOMBI_all2.pdf"  # Replace with your PDF file path

with st.sidebar:
    st.title('BinDoc GmbH')
    st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
    
    add_vertical_space(1)  # Adjust as per the desired spacing
    
    st.markdown("""
    Hello! I’m here to assist you with:<br><br>
    📘 **Glossary Inquiries:**<br>
    I can clarify terms like "DiGA", "AOP", or "BfArM", providing clear and concise explanations to help you understand our content better.<br><br>
    🆘 **Help Page Navigation:**<br>
    Ask me if you forgot your password or want to know more about topics related to the platform.<br><br>
    📰 **Latest Whitepapers Insights:**<br>
    Curious about our recent publications? Feel free to ask about our latest whitepapers!<br><br>
    """, unsafe_allow_html=True)
    
    add_vertical_space(1)  # Adjust as per the desired spacing

    st.write('Made with ❤️ by BinDoc GmbH')

    api_key = os.getenv("OPENAI_API_KEY")
    # Retrieve the API key from st.secrets

# Updated caching mechanism using st.cache_data
@st.cache_data(persist="disk")  # Using persist="disk" to save cache across sessions


def load_vector_store(file_path, store_name, force_reload=False):
    # Check if we need to force reload the vector store (e.g., when the PDF changes)
    if force_reload or not os.path.exists(f"{store_name}.pkl"):
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=200,
            length_function=len
        )
        
        text = load_pdf_text(file_path)
        chunks = text_splitter.split_text(text=text)
        
        embeddings = OpenAIEmbeddings()
        VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
        with open(f"{store_name}.pkl", "wb") as f:
            pickle.dump(VectorStore, f)
    else:
        with open(f"{store_name}.pkl", "rb") as f:
            VectorStore = pickle.load(f)

    return VectorStore

# Utility function to load text from a PDF
def load_pdf_text(file_path):
    pdf_reader = PdfReader(file_path)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text() or ""  # Add fallback for pages where text extraction fails
    return text

def load_chatbot():
    return load_qa_chain(llm=OpenAI(), chain_type="stuff")

def main():
    try:
        hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """
        st.markdown(hide_streamlit_style, unsafe_allow_html=True)
    
        # Main content
        st.title("Welcome to BinDocs ChatBot! 🤖")

    
        # Start tracking user interactions
        with streamlit_analytics.track():
            if not os.path.exists(pdf_path):
                st.error("File not found. Please check the file path.")
                return
    
            VectorStore = load_vector_store(pdf_path, "my_vector_store", force_reload=False)
    
    
            if "chat_history" not in st.session_state:
                st.session_state['chat_history'] = []
    
            display_chat_history(st.session_state['chat_history'])
    
            st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
            st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
            st.write("<!-- End Spacer -->", unsafe_allow_html=True)
    
            new_messages_placeholder = st.empty()
    
            query = st.text_input("Ask questions about your PDF file (in any preferred language):")
            
            if st.button("Was genau ist ein Belegarzt?"):
                query = "Was genau ist ein Belegarzt?"
            if st.button("Wofür wird die Alpha-ID verwendet?"):
                query = "Wofür wird die Alpha-ID verwendet?"
            if st.button("Was sind die Vorteile des ambulanten Operierens?"):
                query = "Was sind die Vorteile des ambulanten Operierens?"
            if st.button("Was kann ich mit dem Prognose-Analyse-Tool machen?"):
                query = "Was kann ich mit dem Prognose-Analyse-Tool machen?"
            if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"):
                query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"
            if st.button("Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"):
                query = "Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"
        
            if query:
                st.session_state['chat_history'].append(("User", query, "new"))

                # Start timing
                start_time = time.time()
                
                with st.spinner('Bot is thinking...'):
                    # Use the VectorStore loaded at the start from the session state
                    chain = load_chatbot()
                    docs = VectorStore.similarity_search(query=query, k=3)
                    with get_openai_callback() as cb:
                        response = chain.run(input_documents=docs, question=query)

                        
                # Stop timing
                end_time = time.time()
                
                # Calculate duration
                duration = end_time - start_time

                # You can use Streamlit's text function to display the timing
                st.text(f"Response time: {duration:.2f} seconds")
    
                st.session_state['chat_history'].append(("Bot", response, "new"))
    
    
                # Display new messages at the bottom
                new_messages = st.session_state['chat_history'][-2:]
                for chat in new_messages:
                    background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
                    new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
    
    
                # Clear the input field after the query is made
                query = ""
    
            # Mark all messages as old after displaying
            st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]

    except Exception as e:
        st.error(f"Upsi, an unexpected error occurred: {e}")
        # Optionally log the exception details to a file or error tracking service


def display_chat_history(chat_history):
    for chat in chat_history:
        background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
        st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)


if __name__ == "__main__":
    main()