File size: 2,963 Bytes
aff3dff
ac00ffa
27e4736
928429b
 
aff3dff
ac00ffa
45996ec
 
27e4736
928429b
27e4736
928429b
 
27e4736
928429b
27e4736
928429b
27e4736
928429b
 
27e4736
 
928429b
 
27e4736
 
928429b
 
27e4736
928429b
 
27e4736
 
928429b
 
27e4736
928429b
 
27e4736
45996ec
932a3aa
 
27e4736
928429b
 
27e4736
 
ac00ffa
 
 
928429b
27e4736
 
ac00ffa
27e4736
ac00ffa
aff3dff
932a3aa
aff3dff
ac00ffa
932a3aa
 
 
45996ec
ac00ffa
932a3aa
 
aff3dff
ac00ffa
932a3aa
45996ec
 
932a3aa
 
aff3dff
ac00ffa
aff3dff
932a3aa
 
ac00ffa
 
 
 
 
aff3dff
 
45996ec
 
 
ac00ffa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import json
import os

# Streamlit app configuration
st.set_page_config(page_title="AI Chatbot", layout="centered")

# Fix the model's configuration dynamically
def fix_model_config(model_name):
    # Load the configuration file directly from the Hugging Face hub
    config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
    config_path = "config.json"

    if not os.path.exists(config_path):
        import requests
        response = requests.get(config_url)
        response.raise_for_status()  # Ensure the request is successful
        with open(config_path, "w") as f:
            f.write(response.text)

    # Load the configuration JSON
    with open(config_path, "r") as f:
        config = json.load(f)

    # Fix the `rope_scaling` field
    if "rope_scaling" in config:
        config["rope_scaling"] = {
            "type": "linear",  # Replace the problematic structure with supported format
            "factor": config["rope_scaling"].get("factor", 1.0)
        }

    # Save the fixed configuration locally
    with open(config_path, "w") as f:
        json.dump(config, f)

    return config_path

# Load the pipeline
@st.cache_resource
def load_pipeline():
    model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"

    # Fix the model configuration
    fixed_config_path = fix_model_config(model_name)

    # Load the tokenizer and model with the fixed configuration
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        config=fixed_config_path,
        torch_dtype=torch.float16,  # Use mixed precision for faster inference
        device_map="auto"          # Automatically allocate to GPU if available
    )

    return pipeline("text-generation", model=model, tokenizer=tokenizer)

pipe = load_pipeline()

# Streamlit App UI
st.title("🤖 AI Chatbot")
st.markdown(
    """
    Welcome to the **AI Chatbot** powered by Hugging Face's **Llama-3.1-8B-Lexi-Uncensored-V2** model.  
    Type your message below and interact with the AI!
    """
)

# User input area
user_input = st.text_area(
    "Your Message",
    placeholder="Type your message here...",
    height=100
)

# Button to generate response
if st.button("Generate Response"):
    if user_input.strip():
        with st.spinner("Generating response..."):
            try:
                response = pipe(user_input, max_length=150, num_return_sequences=1)
                st.text_area("Response", value=response[0]["generated_text"], height=200)
            except Exception as e:
                st.error(f"An error occurred: {e}")
    else:
        st.warning("Please enter a message before clicking the button.")

# Footer
st.markdown("---")
st.markdown("Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face](https://huggingface.co).")