Spaces:
Running
Running
File size: 2,963 Bytes
aff3dff ac00ffa 27e4736 928429b aff3dff ac00ffa 45996ec 27e4736 928429b 27e4736 928429b 27e4736 928429b 27e4736 928429b 27e4736 928429b 27e4736 928429b 27e4736 928429b 27e4736 928429b 27e4736 928429b 27e4736 928429b 27e4736 45996ec 932a3aa 27e4736 928429b 27e4736 ac00ffa 928429b 27e4736 ac00ffa 27e4736 ac00ffa aff3dff 932a3aa aff3dff ac00ffa 932a3aa 45996ec ac00ffa 932a3aa aff3dff ac00ffa 932a3aa 45996ec 932a3aa aff3dff ac00ffa aff3dff 932a3aa ac00ffa aff3dff 45996ec ac00ffa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import json
import os
# Streamlit app configuration
st.set_page_config(page_title="AI Chatbot", layout="centered")
# Fix the model's configuration dynamically
def fix_model_config(model_name):
# Load the configuration file directly from the Hugging Face hub
config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
config_path = "config.json"
if not os.path.exists(config_path):
import requests
response = requests.get(config_url)
response.raise_for_status() # Ensure the request is successful
with open(config_path, "w") as f:
f.write(response.text)
# Load the configuration JSON
with open(config_path, "r") as f:
config = json.load(f)
# Fix the `rope_scaling` field
if "rope_scaling" in config:
config["rope_scaling"] = {
"type": "linear", # Replace the problematic structure with supported format
"factor": config["rope_scaling"].get("factor", 1.0)
}
# Save the fixed configuration locally
with open(config_path, "w") as f:
json.dump(config, f)
return config_path
# Load the pipeline
@st.cache_resource
def load_pipeline():
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
# Fix the model configuration
fixed_config_path = fix_model_config(model_name)
# Load the tokenizer and model with the fixed configuration
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
config=fixed_config_path,
torch_dtype=torch.float16, # Use mixed precision for faster inference
device_map="auto" # Automatically allocate to GPU if available
)
return pipeline("text-generation", model=model, tokenizer=tokenizer)
pipe = load_pipeline()
# Streamlit App UI
st.title("🤖 AI Chatbot")
st.markdown(
"""
Welcome to the **AI Chatbot** powered by Hugging Face's **Llama-3.1-8B-Lexi-Uncensored-V2** model.
Type your message below and interact with the AI!
"""
)
# User input area
user_input = st.text_area(
"Your Message",
placeholder="Type your message here...",
height=100
)
# Button to generate response
if st.button("Generate Response"):
if user_input.strip():
with st.spinner("Generating response..."):
try:
response = pipe(user_input, max_length=150, num_return_sequences=1)
st.text_area("Response", value=response[0]["generated_text"], height=200)
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.warning("Please enter a message before clicking the button.")
# Footer
st.markdown("---")
st.markdown("Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face](https://huggingface.co).") |