Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,59 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
|
|
3 |
import json
|
4 |
-
import requests
|
5 |
import os
|
6 |
|
7 |
# Streamlit app configuration
|
8 |
st.set_page_config(page_title="AI Chatbot", layout="centered")
|
9 |
|
10 |
-
# Fix the model's configuration
|
11 |
def fix_model_config(model_name):
|
12 |
-
#
|
13 |
config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
|
14 |
config_path = "config.json"
|
15 |
-
|
16 |
if not os.path.exists(config_path):
|
|
|
17 |
response = requests.get(config_url)
|
18 |
-
response.raise_for_status() #
|
19 |
with open(config_path, "w") as f:
|
20 |
f.write(response.text)
|
21 |
-
|
22 |
-
# Load the configuration
|
23 |
with open(config_path, "r") as f:
|
24 |
config = json.load(f)
|
25 |
-
|
|
|
26 |
if "rope_scaling" in config:
|
27 |
config["rope_scaling"] = {
|
28 |
-
"type": "linear", # Replace the problematic
|
29 |
"factor": config["rope_scaling"].get("factor", 1.0)
|
30 |
}
|
31 |
-
|
32 |
-
# Save the
|
33 |
with open(config_path, "w") as f:
|
34 |
json.dump(config, f)
|
35 |
-
|
36 |
return config_path
|
37 |
|
38 |
-
# Load the
|
39 |
@st.cache_resource
|
40 |
def load_pipeline():
|
41 |
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
|
42 |
-
|
43 |
# Fix the model configuration
|
44 |
fixed_config_path = fix_model_config(model_name)
|
45 |
-
|
46 |
-
# Load tokenizer and model
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
model = AutoModelForCausalLM.from_pretrained(
|
49 |
model_name,
|
50 |
config=fixed_config_path,
|
51 |
-
|
|
|
52 |
)
|
53 |
-
|
54 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
55 |
|
56 |
pipe = load_pipeline()
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
import json
|
|
|
5 |
import os
|
6 |
|
7 |
# Streamlit app configuration
|
8 |
st.set_page_config(page_title="AI Chatbot", layout="centered")
|
9 |
|
10 |
+
# Fix the model's configuration dynamically
|
11 |
def fix_model_config(model_name):
|
12 |
+
# Load the configuration file directly from the Hugging Face hub
|
13 |
config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
|
14 |
config_path = "config.json"
|
15 |
+
|
16 |
if not os.path.exists(config_path):
|
17 |
+
import requests
|
18 |
response = requests.get(config_url)
|
19 |
+
response.raise_for_status() # Ensure the request is successful
|
20 |
with open(config_path, "w") as f:
|
21 |
f.write(response.text)
|
22 |
+
|
23 |
+
# Load the configuration JSON
|
24 |
with open(config_path, "r") as f:
|
25 |
config = json.load(f)
|
26 |
+
|
27 |
+
# Fix the `rope_scaling` field
|
28 |
if "rope_scaling" in config:
|
29 |
config["rope_scaling"] = {
|
30 |
+
"type": "linear", # Replace the problematic structure with supported format
|
31 |
"factor": config["rope_scaling"].get("factor", 1.0)
|
32 |
}
|
33 |
+
|
34 |
+
# Save the fixed configuration locally
|
35 |
with open(config_path, "w") as f:
|
36 |
json.dump(config, f)
|
37 |
+
|
38 |
return config_path
|
39 |
|
40 |
+
# Load the pipeline
|
41 |
@st.cache_resource
|
42 |
def load_pipeline():
|
43 |
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
|
44 |
+
|
45 |
# Fix the model configuration
|
46 |
fixed_config_path = fix_model_config(model_name)
|
47 |
+
|
48 |
+
# Load the tokenizer and model with the fixed configuration
|
49 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
model = AutoModelForCausalLM.from_pretrained(
|
51 |
model_name,
|
52 |
config=fixed_config_path,
|
53 |
+
torch_dtype=torch.float16, # Use mixed precision for faster inference
|
54 |
+
device_map="auto" # Automatically allocate to GPU if available
|
55 |
)
|
56 |
+
|
57 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
58 |
|
59 |
pipe = load_pipeline()
|