Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,56 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# Streamlit app configuration
|
| 5 |
st.set_page_config(page_title="AI Chatbot", layout="centered")
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
# Load the model pipeline
|
| 8 |
@st.cache_resource
|
| 9 |
def load_pipeline():
|
| 10 |
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
# Load tokenizer and model
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
model_name,
|
| 16 |
-
|
| 17 |
-
|
| 18 |
)
|
|
|
|
| 19 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 20 |
|
| 21 |
pipe = load_pipeline()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import json
|
| 4 |
+
import requests
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
# Streamlit app configuration
|
| 8 |
st.set_page_config(page_title="AI Chatbot", layout="centered")
|
| 9 |
|
| 10 |
+
# Fix the model's configuration before loading
|
| 11 |
+
def fix_model_config(model_name):
|
| 12 |
+
# Download the configuration file from the model repository
|
| 13 |
+
config_url = f"https://huggingface.co/{model_name}/resolve/main/config.json"
|
| 14 |
+
config_path = "config.json"
|
| 15 |
+
|
| 16 |
+
if not os.path.exists(config_path):
|
| 17 |
+
response = requests.get(config_url)
|
| 18 |
+
response.raise_for_status() # Raise an error if the request fails
|
| 19 |
+
with open(config_path, "w") as f:
|
| 20 |
+
f.write(response.text)
|
| 21 |
+
|
| 22 |
+
# Load the configuration and modify rope_scaling if necessary
|
| 23 |
+
with open(config_path, "r") as f:
|
| 24 |
+
config = json.load(f)
|
| 25 |
+
|
| 26 |
+
if "rope_scaling" in config:
|
| 27 |
+
config["rope_scaling"] = {
|
| 28 |
+
"type": "linear", # Replace the problematic rope_scaling type
|
| 29 |
+
"factor": config["rope_scaling"].get("factor", 1.0)
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
# Save the modified configuration
|
| 33 |
+
with open(config_path, "w") as f:
|
| 34 |
+
json.dump(config, f)
|
| 35 |
+
|
| 36 |
+
return config_path
|
| 37 |
+
|
| 38 |
# Load the model pipeline
|
| 39 |
@st.cache_resource
|
| 40 |
def load_pipeline():
|
| 41 |
model_name = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2"
|
| 42 |
|
| 43 |
+
# Fix the model configuration
|
| 44 |
+
fixed_config_path = fix_model_config(model_name)
|
| 45 |
+
|
| 46 |
# Load tokenizer and model
|
| 47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 48 |
model = AutoModelForCausalLM.from_pretrained(
|
| 49 |
model_name,
|
| 50 |
+
config=fixed_config_path,
|
| 51 |
+
device_map="auto" # Use GPU if available
|
| 52 |
)
|
| 53 |
+
|
| 54 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 55 |
|
| 56 |
pipe = load_pipeline()
|