Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
#from google.cloud import speech_v1 | |
#from google.protobuf import timestamp_pb2 | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") | |
def transcribe(stream, audio_bytes): | |
"""Transcribe audio bytes to text using Google Cloud Speech to Text.""" | |
sr, y = audio_bytes | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
if stream is not None: | |
stream = np.concatenate([stream, y]) | |
else: | |
stream = y | |
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"] | |
demo = gr.Interface( | |
transcribe, | |
["state", gr.Audio(sources=["microphone"], streaming=False)], | |
["state", "text"], | |
live=True, | |
) | |
demo.launch() | |