File size: 773 Bytes
cb9846d
13119ab
a295231
13119ab
 
cb9846d
13119ab
cb9846d
d9607d1
07b76a5
cb9846d
d9607d1
 
 
 
13119ab
d9607d1
 
13119ab
cb9846d
 
 
 
1948a5c
d9607d1
07b76a5
cb9846d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
from transformers import pipeline
import numpy as np
#from google.cloud import speech_v1
#from google.protobuf import timestamp_pb2

transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")

def transcribe(stream, audio_bytes):
    """Transcribe audio bytes to text using Google Cloud Speech to Text."""

    sr, y = audio_bytes
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    if stream is not None:
        stream = np.concatenate([stream, y])
    else:
        stream = y
    return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"]


demo = gr.Interface(
    transcribe,
    ["state", gr.Audio(sources=["microphone"], streaming=False)],
    ["state", "text"],
    live=True,
)

demo.launch()