import gradio as gr from transformers import pipeline import numpy as np #from google.cloud import speech_v1 #from google.protobuf import timestamp_pb2 transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") def transcribe(stream, audio_bytes): """Transcribe audio bytes to text using Google Cloud Speech to Text.""" sr, y = audio_bytes y = y.astype(np.float32) y /= np.max(np.abs(y)) if stream is not None: stream = np.concatenate([stream, y]) else: stream = y return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"] demo = gr.Interface( transcribe, ["state", gr.Audio(sources=["microphone"], streaming=False)], ["state", "text"], live=True, ) demo.launch()