|
import os |
|
import json |
|
import torch |
|
import logging |
|
import gradio as gr |
|
from importlib.resources import files |
|
from txagent import TxAgent |
|
from tooluniverse import ToolUniverse |
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
os.environ["MKL_THREADING_LAYER"] = "GNU" |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
CONFIG = { |
|
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt", |
|
"tool_files": { |
|
"opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')), |
|
"fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')), |
|
"special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')), |
|
"monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')), |
|
"new_tool": os.path.join(current_dir, 'data', 'new_tool.json') |
|
} |
|
} |
|
|
|
def safe_load_embeddings(filepath): |
|
try: |
|
return torch.load(filepath, weights_only=True) |
|
except Exception as e: |
|
logger.warning(f"Retrying with weights_only=False due to: {e}") |
|
try: |
|
return torch.load(filepath, weights_only=False) |
|
except Exception as e: |
|
logger.error(f"Failed to load embeddings: {e}") |
|
return None |
|
|
|
def patch_embedding_loading(): |
|
from txagent.toolrag import ToolRAGModel |
|
def patched_load(self, tooluniverse): |
|
try: |
|
if not os.path.exists(CONFIG["embedding_filename"]): |
|
return False |
|
self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"]) |
|
|
|
tools = tooluniverse.get_all_tools() if hasattr(tooluniverse, "get_all_tools") else getattr(tooluniverse, "tools", []) |
|
if len(tools) != len(self.tool_desc_embedding): |
|
logger.warning("Tool count mismatch.") |
|
self.tool_desc_embedding = self.tool_desc_embedding[:len(tools)] |
|
return True |
|
except Exception as e: |
|
logger.error(f"Embedding load failed: {e}") |
|
return False |
|
|
|
ToolRAGModel.load_tool_desc_embedding = patched_load |
|
|
|
def prepare_tool_files(): |
|
os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True) |
|
if not os.path.exists(CONFIG["tool_files"]["new_tool"]): |
|
try: |
|
tu = ToolUniverse() |
|
tools = tu.get_all_tools() if hasattr(tu, "get_all_tools") else getattr(tu, "tools", []) |
|
with open(CONFIG["tool_files"]["new_tool"], "w") as f: |
|
json.dump(tools, f, indent=2) |
|
except Exception as e: |
|
logger.error(f"Tool generation failed: {e}") |
|
|
|
def create_agent(): |
|
patch_embedding_loading() |
|
prepare_tool_files() |
|
try: |
|
agent = TxAgent( |
|
CONFIG["model_name"], |
|
CONFIG["rag_model_name"], |
|
tool_files_dict=CONFIG["tool_files"], |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=10, |
|
seed=42, |
|
additional_default_tools=["DirectResponse", "RequireClarification"] |
|
) |
|
agent.init_model() |
|
return agent |
|
except Exception as e: |
|
logger.error(f"Agent initialization failed: {e}") |
|
raise |
|
|
|
|
|
def respond(msg, chat_history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): |
|
if not isinstance(msg, str) or len(msg.strip()) <= 10: |
|
return chat_history + [{"role": "assistant", "content": "Hi, I am TxAgent. Please provide a valid message longer than 10 characters."}] |
|
|
|
message = msg.strip() |
|
chat_history.append({"role": "user", "content": message}) |
|
formatted_history = [(m["role"], m["content"]) for m in chat_history] |
|
|
|
try: |
|
response_generator = agent.run_gradio_chat( |
|
message=message, |
|
history=formatted_history, |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
max_token=max_tokens, |
|
call_agent=multi_agent, |
|
conversation=conversation, |
|
max_round=max_round, |
|
seed=42, |
|
call_agent_level=None, |
|
sub_agent_task=None |
|
) |
|
collected = "" |
|
for chunk in response_generator: |
|
collected += chunk.get("content", "") if isinstance(chunk, dict) else str(chunk) |
|
chat_history.append({"role": "assistant", "content": collected}) |
|
except Exception as e: |
|
chat_history.append({"role": "assistant", "content": f"Error: {e}"}) |
|
return chat_history |
|
|
|
def create_demo(agent): |
|
with gr.Blocks(css=".gr-button { font-size: 18px !important; }") as demo: |
|
chatbot = gr.Chatbot(label="TxAgent", type="messages", render_markdown=True) |
|
msg = gr.Textbox(label="Your question", placeholder="Ask a biomedical question...", scale=6) |
|
with gr.Row(): |
|
temp = gr.Slider(0, 1, value=0.3, label="Temperature") |
|
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens") |
|
max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens") |
|
max_rounds = gr.Slider(1, 30, value=30, label="Max Rounds") |
|
multi_agent = gr.Checkbox(label="Multi-Agent Mode") |
|
submit = gr.Button("Ask TxAgent") |
|
submit.click( |
|
respond, |
|
inputs=[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, gr.State([]), max_rounds], |
|
outputs=[chatbot] |
|
) |
|
return demo |
|
|
|
def main(): |
|
global agent |
|
agent = create_agent() |
|
demo = create_demo(agent) |
|
demo.launch(share=False) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|