File size: 5,929 Bytes
4b0f1a8
511fb62
5ffaf72
9aeb1dd
 
9438945
511fb62
 
410d25f
79fb3cd
 
 
 
 
 
 
511fb62
5ffaf72
12efdad
59ced24
 
a87f861
fc30674
59ced24
9438945
 
 
 
79fb3cd
a87f861
12efdad
70839bb
5ffaf72
410d25f
 
 
5ffaf72
bae0943
e3711be
bae0943
5ffaf72
bae0943
12efdad
709aba9
5ffaf72
 
 
 
709aba9
5ffaf72
709aba9
5ffaf72
 
 
 
 
 
 
 
709aba9
5ffaf72
79fb3cd
e3711be
 
 
6916257
 
5ffaf72
709aba9
 
6916257
5ffaf72
e3711be
 
709aba9
e3711be
6916257
 
709aba9
 
6916257
 
 
 
5ffaf72
 
6916257
 
 
 
5ffaf72
6916257
 
5ffaf72
e6865f5
 
5ffaf72
5205ee8
5ffaf72
 
 
79fb3cd
6d40680
709aba9
5ffaf72
 
 
 
 
 
 
 
 
 
 
fc30674
60a4dae
 
5ffaf72
e6865f5
709aba9
5ffaf72
6d40680
709aba9
 
5ffaf72
e6865f5
5ffaf72
709aba9
 
 
 
 
 
5ffaf72
709aba9
 
6d40680
709aba9
 
511fb62
79fb3cd
511fb62
5ffaf72
 
 
 
70839bb
 
9aeb1dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import json
import torch
import logging
import gradio as gr
from importlib.resources import files
from txagent import TxAgent
from tooluniverse import ToolUniverse

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
current_dir = os.path.dirname(os.path.abspath(__file__))

CONFIG = {
    "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
    "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
    "embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
    "tool_files": {
        "opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
        "fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
        "special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
        "monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
        "new_tool": os.path.join(current_dir, 'data', 'new_tool.json')
    }
}

def safe_load_embeddings(filepath):
    try:
        return torch.load(filepath, weights_only=True)
    except Exception as e:
        logger.warning(f"Retrying with weights_only=False due to: {e}")
        try:
            return torch.load(filepath, weights_only=False)
        except Exception as e:
            logger.error(f"Failed to load embeddings: {e}")
            return None

def patch_embedding_loading():
    from txagent.toolrag import ToolRAGModel
    def patched_load(self, tooluniverse):
        try:
            if not os.path.exists(CONFIG["embedding_filename"]):
                return False
            self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])

            tools = tooluniverse.get_all_tools() if hasattr(tooluniverse, "get_all_tools") else getattr(tooluniverse, "tools", [])
            if len(tools) != len(self.tool_desc_embedding):
                logger.warning("Tool count mismatch.")
                self.tool_desc_embedding = self.tool_desc_embedding[:len(tools)]
            return True
        except Exception as e:
            logger.error(f"Embedding load failed: {e}")
            return False

    ToolRAGModel.load_tool_desc_embedding = patched_load

def prepare_tool_files():
    os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True)
    if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
        try:
            tu = ToolUniverse()
            tools = tu.get_all_tools() if hasattr(tu, "get_all_tools") else getattr(tu, "tools", [])
            with open(CONFIG["tool_files"]["new_tool"], "w") as f:
                json.dump(tools, f, indent=2)
        except Exception as e:
            logger.error(f"Tool generation failed: {e}")

def create_agent():
    patch_embedding_loading()
    prepare_tool_files()
    try:
        agent = TxAgent(
            CONFIG["model_name"],
            CONFIG["rag_model_name"],
            tool_files_dict=CONFIG["tool_files"],
            force_finish=True,
            enable_checker=True,
            step_rag_num=10,
            seed=42,
            additional_default_tools=["DirectResponse", "RequireClarification"]
        )
        agent.init_model()
        return agent
    except Exception as e:
        logger.error(f"Agent initialization failed: {e}")
        raise

# ✅ FIXED: Proper message formatting
def respond(msg, chat_history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
    if not isinstance(msg, str) or len(msg.strip()) <= 10:
        return chat_history + [{"role": "assistant", "content": "Hi, I am TxAgent. Please provide a valid message longer than 10 characters."}]

    message = msg.strip()
    chat_history.append({"role": "user", "content": message})
    formatted_history = [(m["role"], m["content"]) for m in chat_history]

    try:
        response_generator = agent.run_gradio_chat(
            message=message,
            history=formatted_history,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            max_token=max_tokens,
            call_agent=multi_agent,
            conversation=conversation,
            max_round=max_round,
            seed=42,
            call_agent_level=None,
            sub_agent_task=None
        )
        collected = ""
        for chunk in response_generator:
            collected += chunk.get("content", "") if isinstance(chunk, dict) else str(chunk)
        chat_history.append({"role": "assistant", "content": collected})
    except Exception as e:
        chat_history.append({"role": "assistant", "content": f"Error: {e}"})
    return chat_history

def create_demo(agent):
    with gr.Blocks(css=".gr-button { font-size: 18px !important; }") as demo:
        chatbot = gr.Chatbot(label="TxAgent", type="messages", render_markdown=True)
        msg = gr.Textbox(label="Your question", placeholder="Ask a biomedical question...", scale=6)
        with gr.Row():
            temp = gr.Slider(0, 1, value=0.3, label="Temperature")
            max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
            max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens")
            max_rounds = gr.Slider(1, 30, value=30, label="Max Rounds")
            multi_agent = gr.Checkbox(label="Multi-Agent Mode")
        submit = gr.Button("Ask TxAgent")
        submit.click(
            respond,
            inputs=[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, gr.State([]), max_rounds],
            outputs=[chatbot]
        )
    return demo

def main():
    global agent
    agent = create_agent()
    demo = create_demo(agent)
    demo.launch(share=False)

if __name__ == "__main__":
    main()