Update app.py
Browse files
app.py
CHANGED
@@ -4,19 +4,23 @@ import logging
|
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
from tooluniverse import ToolUniverse
|
7 |
-
from
|
8 |
import warnings
|
9 |
from typing import List, Dict, Any
|
10 |
|
11 |
# Suppress specific warnings
|
12 |
warnings.filterwarnings("ignore", category=UserWarning)
|
13 |
|
14 |
-
# Configuration
|
15 |
CONFIG = {
|
16 |
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
17 |
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
18 |
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
|
19 |
"tool_files": {
|
|
|
|
|
|
|
|
|
20 |
"new_tool": "./data/new_tool.json"
|
21 |
}
|
22 |
}
|
@@ -34,7 +38,7 @@ def prepare_tool_files():
|
|
34 |
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
|
35 |
logger.info("Generating tool list using ToolUniverse...")
|
36 |
tu = ToolUniverse()
|
37 |
-
tools = tu.get_all_tools()
|
38 |
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
|
39 |
json.dump(tools, f, indent=2)
|
40 |
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
|
@@ -46,140 +50,134 @@ def safe_load_embeddings(filepath: str) -> Any:
|
|
46 |
return torch.load(filepath, weights_only=True)
|
47 |
except Exception as e:
|
48 |
logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
original_load = ToolRAGModel.load_tool_desc_embedding
|
58 |
-
|
59 |
-
def patched_load(self, tooluniverse: ToolUniverse) -> bool:
|
60 |
-
try:
|
61 |
-
if not os.path.exists(CONFIG["embedding_filename"]):
|
62 |
-
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
|
63 |
-
return False
|
64 |
-
|
65 |
-
# Load embeddings safely
|
66 |
-
self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])
|
67 |
-
|
68 |
-
# Handle tool count mismatch
|
69 |
-
tools = tooluniverse.get_all_tools()
|
70 |
-
current_count = len(tools)
|
71 |
-
embedding_count = len(self.tool_desc_embedding)
|
72 |
-
|
73 |
-
if current_count != embedding_count:
|
74 |
-
logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})")
|
75 |
-
|
76 |
-
if current_count < embedding_count:
|
77 |
-
self.tool_desc_embedding = self.tool_desc_embedding[:current_count]
|
78 |
-
logger.info(f"Truncated embeddings to match {current_count} tools")
|
79 |
-
else:
|
80 |
-
last_embedding = self.tool_desc_embedding[-1]
|
81 |
-
padding = [last_embedding] * (current_count - embedding_count)
|
82 |
-
self.tool_desc_embedding = torch.cat(
|
83 |
-
[self.tool_desc_embedding] + padding
|
84 |
-
)
|
85 |
-
logger.info(f"Padded embeddings to match {current_count} tools")
|
86 |
-
|
87 |
-
return True
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
logger.error(f"Failed to load embeddings: {str(e)}")
|
91 |
-
return False
|
92 |
-
|
93 |
-
# Apply the patch
|
94 |
-
ToolRAGModel.load_tool_desc_embedding = patched_load
|
95 |
-
logger.info("Successfully patched embedding loading")
|
96 |
-
|
97 |
-
except Exception as e:
|
98 |
-
logger.error(f"Failed to patch embedding loading: {str(e)}")
|
99 |
-
raise
|
100 |
|
101 |
-
class
|
102 |
def __init__(self):
|
103 |
-
self.
|
|
|
|
|
|
|
104 |
self.is_initialized = False
|
|
|
105 |
|
106 |
def initialize(self) -> str:
|
107 |
-
"""Initialize the
|
108 |
if self.is_initialized:
|
109 |
return "✅ Already initialized"
|
110 |
|
111 |
try:
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
self.
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
enable_checker=True,
|
122 |
-
step_rag_num=10,
|
123 |
-
seed=100,
|
124 |
-
additional_default_tools=["DirectResponse", "RequireClarification"]
|
125 |
)
|
126 |
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
self.is_initialized = True
|
131 |
-
return "✅
|
132 |
|
133 |
except Exception as e:
|
134 |
logger.error(f"Initialization failed: {str(e)}")
|
135 |
return f"❌ Initialization failed: {str(e)}"
|
136 |
|
137 |
def chat(self, message: str, history: List[List[str]]) -> List[List[str]]:
|
138 |
-
"""
|
139 |
-
Handle chat interactions with the TxAgent
|
140 |
-
|
141 |
-
Args:
|
142 |
-
message: User input message
|
143 |
-
history: Chat history in format [[user_msg, bot_msg], ...]
|
144 |
-
|
145 |
-
Returns:
|
146 |
-
Updated chat history
|
147 |
-
"""
|
148 |
if not self.is_initialized:
|
149 |
return history + [["", "⚠️ Please initialize the model first"]]
|
150 |
|
151 |
try:
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
# Generate response
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
165 |
max_new_tokens=1024,
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
172 |
|
173 |
-
# Format response for Gradio Chatbot
|
174 |
return history + [[message, response]]
|
175 |
-
|
176 |
except Exception as e:
|
177 |
logger.error(f"Chat error: {str(e)}")
|
178 |
return history + [["", f"Error: {str(e)}"]]
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
def create_interface() -> gr.Blocks:
|
181 |
"""Create the Gradio interface"""
|
182 |
-
|
183 |
|
184 |
with gr.Blocks(
|
185 |
title="TxAgent",
|
@@ -189,7 +187,7 @@ def create_interface() -> gr.Blocks:
|
|
189 |
) as demo:
|
190 |
gr.Markdown("""
|
191 |
# 🧠 TxAgent: Therapeutic Reasoning AI
|
192 |
-
### (
|
193 |
""")
|
194 |
|
195 |
with gr.Row():
|
@@ -212,9 +210,8 @@ def create_interface() -> gr.Blocks:
|
|
212 |
inputs=msg
|
213 |
)
|
214 |
|
215 |
-
def wrapper_initialize()
|
216 |
-
|
217 |
-
status = app.initialize()
|
218 |
return status, gr.update(interactive=False)
|
219 |
|
220 |
init_btn.click(
|
@@ -223,7 +220,7 @@ def create_interface() -> gr.Blocks:
|
|
223 |
)
|
224 |
|
225 |
msg.submit(
|
226 |
-
fn=
|
227 |
inputs=[msg, chatbot],
|
228 |
outputs=chatbot
|
229 |
).then(
|
|
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
from tooluniverse import ToolUniverse
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
import warnings
|
9 |
from typing import List, Dict, Any
|
10 |
|
11 |
# Suppress specific warnings
|
12 |
warnings.filterwarnings("ignore", category=UserWarning)
|
13 |
|
14 |
+
# Configuration
|
15 |
CONFIG = {
|
16 |
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
|
17 |
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
|
18 |
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
|
19 |
"tool_files": {
|
20 |
+
"opentarget": "opentarget_tools.json",
|
21 |
+
"fda_drug_label": "fda_drug_labeling_tools.json",
|
22 |
+
"special_tools": "special_tools.json",
|
23 |
+
"monarch": "monarch_tools.json",
|
24 |
"new_tool": "./data/new_tool.json"
|
25 |
}
|
26 |
}
|
|
|
38 |
if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
|
39 |
logger.info("Generating tool list using ToolUniverse...")
|
40 |
tu = ToolUniverse()
|
41 |
+
tools = tu.get_all_tools() if hasattr(tu, 'get_all_tools') else []
|
42 |
with open(CONFIG["tool_files"]["new_tool"], "w") as f:
|
43 |
json.dump(tools, f, indent=2)
|
44 |
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
|
|
|
50 |
return torch.load(filepath, weights_only=True)
|
51 |
except Exception as e:
|
52 |
logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
|
53 |
+
try:
|
54 |
+
# Try with the safe_globals context manager
|
55 |
+
with torch.serialization.safe_globals([torch.serialization._reconstruct]):
|
56 |
+
return torch.load(filepath, weights_only=False)
|
57 |
+
except Exception as e:
|
58 |
+
logger.error(f"Failed to load embeddings even with safe_globals: {str(e)}")
|
59 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
class TxAgentWrapper:
|
62 |
def __init__(self):
|
63 |
+
self.model = None
|
64 |
+
self.tokenizer = None
|
65 |
+
self.rag_model = None
|
66 |
+
self.tooluniverse = None
|
67 |
self.is_initialized = False
|
68 |
+
self.special_tools = ['Finish', 'Tool_RAG', 'DirectResponse', 'RequireClarification']
|
69 |
|
70 |
def initialize(self) -> str:
|
71 |
+
"""Initialize the model from Hugging Face"""
|
72 |
if self.is_initialized:
|
73 |
return "✅ Already initialized"
|
74 |
|
75 |
try:
|
76 |
+
logger.info("Loading models from Hugging Face Hub...")
|
77 |
+
|
78 |
+
# Initialize ToolUniverse first
|
79 |
+
self.tooluniverse = ToolUniverse(tool_files=CONFIG["tool_files"])
|
80 |
+
if hasattr(self.tooluniverse, 'load_tools'):
|
81 |
+
self.tooluniverse.load_tools()
|
82 |
+
logger.info(f"Loaded {len(self.tooluniverse.tools)} tools")
|
83 |
+
else:
|
84 |
+
logger.error("ToolUniverse doesn't have load_tools method")
|
85 |
+
return "❌ Failed to load tools"
|
86 |
|
87 |
+
# Load main model
|
88 |
+
self.tokenizer = AutoTokenizer.from_pretrained(CONFIG["model_name"])
|
89 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
90 |
+
CONFIG["model_name"],
|
91 |
+
device_map="auto",
|
92 |
+
torch_dtype=torch.float16
|
|
|
|
|
|
|
|
|
93 |
)
|
94 |
|
95 |
+
# Load embeddings if file exists
|
96 |
+
if os.path.exists(CONFIG["embedding_filename"]):
|
97 |
+
self.rag_model = safe_load_embeddings(CONFIG["embedding_filename"])
|
98 |
+
if self.rag_model is None:
|
99 |
+
return "❌ Failed to load embeddings"
|
100 |
|
101 |
self.is_initialized = True
|
102 |
+
return "✅ Model initialized successfully"
|
103 |
|
104 |
except Exception as e:
|
105 |
logger.error(f"Initialization failed: {str(e)}")
|
106 |
return f"❌ Initialization failed: {str(e)}"
|
107 |
|
108 |
def chat(self, message: str, history: List[List[str]]) -> List[List[str]]:
|
109 |
+
"""Handle chat interactions with the model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
if not self.is_initialized:
|
111 |
return history + [["", "⚠️ Please initialize the model first"]]
|
112 |
|
113 |
try:
|
114 |
+
if len(message) <= 10:
|
115 |
+
return history + [["", "Please provide a more detailed question (at least 10 characters)"]]
|
116 |
+
|
117 |
+
# Prepare tools prompt
|
118 |
+
tools_prompt = self._prepare_tools_prompt(message)
|
119 |
+
|
120 |
+
# Format conversation
|
121 |
+
conversation = [
|
122 |
+
{"role": "system", "content": "You are a helpful assistant that will solve problems through detailed, step-by-step reasoning."},
|
123 |
+
*self._format_history(history),
|
124 |
+
{"role": "user", "content": message}
|
125 |
+
]
|
126 |
|
127 |
# Generate response
|
128 |
+
inputs = self.tokenizer.apply_chat_template(
|
129 |
+
conversation,
|
130 |
+
add_generation_prompt=True,
|
131 |
+
return_tensors="pt"
|
132 |
+
).to(self.model.device)
|
133 |
+
|
134 |
+
outputs = self.model.generate(
|
135 |
+
inputs,
|
136 |
max_new_tokens=1024,
|
137 |
+
temperature=0.7,
|
138 |
+
do_sample=True,
|
139 |
+
pad_token_id=self.tokenizer.eos_token_id
|
140 |
+
)
|
141 |
+
|
142 |
+
# Decode and clean response
|
143 |
+
response = self.tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
144 |
+
response = response.split("[TOOL_CALLS]")[0].strip()
|
145 |
|
|
|
146 |
return history + [[message, response]]
|
147 |
+
|
148 |
except Exception as e:
|
149 |
logger.error(f"Chat error: {str(e)}")
|
150 |
return history + [["", f"Error: {str(e)}"]]
|
151 |
|
152 |
+
def _prepare_tools_prompt(self, message: str) -> str:
|
153 |
+
"""Prepare the tools prompt section"""
|
154 |
+
if not hasattr(self.tooluniverse, 'tools'):
|
155 |
+
return ""
|
156 |
+
|
157 |
+
tools_prompt = "\n\nYou have access to the following tools:\n"
|
158 |
+
for tool in self.tooluniverse.tools:
|
159 |
+
if tool['name'] not in self.special_tools:
|
160 |
+
tools_prompt += f"- {tool['name']}: {tool['description']}\n"
|
161 |
+
|
162 |
+
# Add special tools
|
163 |
+
tools_prompt += "\nSpecial tools:\n"
|
164 |
+
tools_prompt += "- Finish: Use when you have the final answer\n"
|
165 |
+
tools_prompt += "- Tool_RAG: Search for additional tools when needed\n"
|
166 |
+
|
167 |
+
return tools_prompt
|
168 |
+
|
169 |
+
def _format_history(self, history: List[List[str]]) -> List[Dict[str, str]]:
|
170 |
+
"""Format chat history for the model"""
|
171 |
+
formatted = []
|
172 |
+
for user_msg, bot_msg in history:
|
173 |
+
formatted.append({"role": "user", "content": user_msg})
|
174 |
+
if bot_msg:
|
175 |
+
formatted.append({"role": "assistant", "content": bot_msg})
|
176 |
+
return formatted
|
177 |
+
|
178 |
def create_interface() -> gr.Blocks:
|
179 |
"""Create the Gradio interface"""
|
180 |
+
agent = TxAgentWrapper()
|
181 |
|
182 |
with gr.Blocks(
|
183 |
title="TxAgent",
|
|
|
187 |
) as demo:
|
188 |
gr.Markdown("""
|
189 |
# 🧠 TxAgent: Therapeutic Reasoning AI
|
190 |
+
### (Loading from Hugging Face Hub)
|
191 |
""")
|
192 |
|
193 |
with gr.Row():
|
|
|
210 |
inputs=msg
|
211 |
)
|
212 |
|
213 |
+
def wrapper_initialize():
|
214 |
+
status = agent.initialize()
|
|
|
215 |
return status, gr.update(interactive=False)
|
216 |
|
217 |
init_btn.click(
|
|
|
220 |
)
|
221 |
|
222 |
msg.submit(
|
223 |
+
fn=agent.chat,
|
224 |
inputs=[msg, chatbot],
|
225 |
outputs=chatbot
|
226 |
).then(
|