Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
import random
|
2 |
import datetime
|
3 |
import sys
|
4 |
-
from txagent import TxAgent
|
5 |
-
import spaces
|
6 |
-
import gradio as gr
|
7 |
import os
|
8 |
import torch
|
9 |
import logging
|
|
|
10 |
from importlib.resources import files
|
11 |
-
import
|
|
|
|
|
12 |
|
13 |
# Set up logging
|
14 |
logging.basicConfig(
|
@@ -20,6 +20,7 @@ logger = logging.getLogger(__name__)
|
|
20 |
# Determine the directory where the current file is located
|
21 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
22 |
os.environ["MKL_THREADING_LAYER"] = "GNU"
|
|
|
23 |
|
24 |
# Configuration
|
25 |
CONFIG = {
|
@@ -35,33 +36,36 @@ CONFIG = {
|
|
35 |
}
|
36 |
}
|
37 |
|
38 |
-
# Set an environment variable
|
39 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
40 |
-
|
41 |
DESCRIPTION = '''
|
42 |
<div>
|
43 |
-
<h1 style="text-align: center;">TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools
|
44 |
</div>
|
45 |
'''
|
|
|
46 |
INTRO = """
|
47 |
-
Precision therapeutics require multimodal adaptive models that provide personalized treatment recommendations.
|
|
|
|
|
|
|
48 |
"""
|
49 |
|
50 |
LICENSE = """
|
51 |
-
We welcome your feedback and suggestions to enhance your experience with TxAgent, and if you're interested
|
|
|
52 |
|
53 |
### Medical Advice Disclaimer
|
54 |
DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE
|
55 |
-
The information, including but not limited to, text, graphics, images and other material contained on this
|
|
|
|
|
56 |
"""
|
57 |
|
58 |
PLACEHOLDER = """
|
59 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
60 |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">TxAgent</h1>
|
61 |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Tips before using TxAgent:</p>
|
62 |
-
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Please click clear🗑️
|
63 |
-
(
|
64 |
-
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Click retry🔄 (below message) to get multiple versions of the answer.</p>
|
65 |
</div>
|
66 |
"""
|
67 |
|
@@ -90,27 +94,17 @@ h1 {
|
|
90 |
"""
|
91 |
|
92 |
chat_css = """
|
93 |
-
.gr-button { font-size: 20px !important; }
|
94 |
-
.gr-button svg { width: 32px !important; height: 32px !important; }
|
95 |
"""
|
96 |
|
97 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
98 |
-
|
99 |
-
question_examples = [
|
100 |
-
['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of moderate hepatic impairment?'],
|
101 |
-
['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of severe hepatic impairment?'],
|
102 |
-
['A 30-year-old patient is taking Prozac to treat their depression. They were recently diagnosed with WHIM syndrome and require a treatment for that condition as well. Is Xolremdi suitable for this patient, considering contraindications?'],
|
103 |
-
]
|
104 |
-
|
105 |
def safe_load_embeddings(filepath: str) -> any:
|
106 |
"""Safely load embeddings with proper weights_only handling"""
|
107 |
try:
|
108 |
-
# First try with weights_only=True (secure mode)
|
109 |
return torch.load(filepath, weights_only=True)
|
110 |
except Exception as e:
|
111 |
logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
|
112 |
try:
|
113 |
-
# Try with the safe_globals context manager
|
114 |
with torch.serialization.safe_globals([torch.serialization._reconstruct]):
|
115 |
return torch.load(filepath, weights_only=False)
|
116 |
except Exception as e:
|
@@ -130,10 +124,8 @@ def patch_embedding_loading():
|
|
130 |
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
|
131 |
return False
|
132 |
|
133 |
-
# Load embeddings safely
|
134 |
self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])
|
135 |
|
136 |
-
# Handle tool count mismatch
|
137 |
tools = tooluniverse.get_all_tools()
|
138 |
current_count = len(tools)
|
139 |
embedding_count = len(self.tool_desc_embedding)
|
@@ -147,9 +139,7 @@ def patch_embedding_loading():
|
|
147 |
else:
|
148 |
last_embedding = self.tool_desc_embedding[-1]
|
149 |
padding = [last_embedding] * (current_count - embedding_count)
|
150 |
-
self.tool_desc_embedding = torch.cat(
|
151 |
-
[self.tool_desc_embedding] + padding
|
152 |
-
)
|
153 |
logger.info(f"Padded embeddings to match {current_count} tools")
|
154 |
|
155 |
return True
|
@@ -158,7 +148,6 @@ def patch_embedding_loading():
|
|
158 |
logger.error(f"Failed to load embeddings: {str(e)}")
|
159 |
return False
|
160 |
|
161 |
-
# Apply the patch
|
162 |
ToolRAGModel.load_tool_desc_embedding = patched_load
|
163 |
logger.info("Successfully patched embedding loading")
|
164 |
|
@@ -177,27 +166,31 @@ def prepare_tool_files():
|
|
177 |
json.dump(tools, f, indent=2)
|
178 |
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
201 |
updated_params = agent.update_parameters(
|
202 |
enable_finish=enable_finish,
|
203 |
enable_rag=enable_rag,
|
@@ -211,169 +204,180 @@ def update_model_parameters(enable_finish, enable_rag, enable_summary,
|
|
211 |
force_finish=force_finish,
|
212 |
seed=seed,
|
213 |
)
|
214 |
-
|
215 |
return updated_params
|
216 |
|
217 |
-
def update_seed():
|
218 |
-
|
219 |
seed = random.randint(0, 10000)
|
220 |
-
updated_params = agent.update_parameters(
|
221 |
-
seed=seed,
|
222 |
-
)
|
223 |
return updated_params
|
224 |
|
225 |
-
def handle_retry(history, retry_data: gr.RetryData, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
|
226 |
-
|
|
|
227 |
new_history = history[:retry_data.index]
|
228 |
previous_prompt = history[retry_data.index]['content']
|
229 |
-
|
230 |
print("previous_prompt", previous_prompt)
|
231 |
-
|
232 |
-
|
233 |
|
234 |
PASSWORD = "mypassword"
|
235 |
|
236 |
def check_password(input_password):
|
|
|
237 |
if input_password == PASSWORD:
|
238 |
return gr.update(visible=True), ""
|
239 |
else:
|
240 |
return gr.update(visible=False), "Incorrect password, try again!"
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
# Gradio block
|
245 |
-
chatbot = gr.Chatbot(height=800, placeholder=PLACEHOLDER,
|
246 |
-
label='TxAgent', type="messages", show_copy_button=True)
|
247 |
-
|
248 |
-
with gr.Blocks(css=css) as demo:
|
249 |
-
gr.Markdown(DESCRIPTION)
|
250 |
-
gr.Markdown(INTRO)
|
251 |
default_temperature = 0.3
|
252 |
default_max_new_tokens = 1024
|
253 |
default_max_tokens = 81920
|
254 |
default_max_round = 30
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
gr.
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
)
|
280 |
-
|
281 |
-
with gr.Accordion("Settings", open=False):
|
282 |
-
# Define the sliders
|
283 |
-
temperature_slider = gr.Slider(
|
284 |
-
minimum=0,
|
285 |
-
maximum=1,
|
286 |
-
step=0.1,
|
287 |
-
value=default_temperature,
|
288 |
-
label="Temperature"
|
289 |
-
)
|
290 |
-
max_new_tokens_slider = gr.Slider(
|
291 |
-
minimum=128,
|
292 |
-
maximum=4096,
|
293 |
-
step=1,
|
294 |
-
value=default_max_new_tokens,
|
295 |
-
label="Max new tokens"
|
296 |
-
)
|
297 |
-
max_tokens_slider = gr.Slider(
|
298 |
-
minimum=128,
|
299 |
-
maximum=32000,
|
300 |
-
step=1,
|
301 |
-
value=default_max_tokens,
|
302 |
-
label="Max tokens"
|
303 |
)
|
304 |
-
max_round_slider = gr.Slider(
|
305 |
-
minimum=0,
|
306 |
-
maximum=50,
|
307 |
-
step=1,
|
308 |
-
value=default_max_round,
|
309 |
-
label="Max round")
|
310 |
-
|
311 |
-
# Automatically update states when slider values change
|
312 |
-
temperature_slider.change(
|
313 |
-
lambda x: x, inputs=temperature_slider, outputs=temperature_state)
|
314 |
-
max_new_tokens_slider.change(
|
315 |
-
lambda x: x, inputs=max_new_tokens_slider, outputs=max_new_tokens_state)
|
316 |
-
max_tokens_slider.change(
|
317 |
-
lambda x: x, inputs=max_tokens_slider, outputs=max_tokens_state)
|
318 |
-
max_round_slider.change(
|
319 |
-
lambda x: x, inputs=max_round_slider, outputs=max_round_state)
|
320 |
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
label="Initial RAG Num", value=0)
|
344 |
-
step_rag_num = gr.Number(
|
345 |
-
label="Step RAG Num", value=10)
|
346 |
-
skip_last_k = gr.Number(label="Skip Last K", value=0)
|
347 |
-
summary_mode = gr.Textbox(
|
348 |
-
label="Summary Mode", value='step')
|
349 |
-
summary_skip_last_k = gr.Number(
|
350 |
-
label="Summary Skip Last K", value=0)
|
351 |
-
summary_context_length = gr.Number(
|
352 |
-
label="Summary Context Length", value=None)
|
353 |
-
force_finish = gr.Checkbox(
|
354 |
-
label="Force FinalAnswer", value=True)
|
355 |
-
seed = gr.Number(label="Seed", value=100)
|
356 |
-
# Button to submit and update parameters
|
357 |
-
submit_btn = gr.Button("Update Parameters")
|
358 |
-
|
359 |
-
# Display the updated parameters
|
360 |
-
updated_parameters_output = gr.JSON()
|
361 |
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
)
|
376 |
-
gr.Markdown(LICENSE)
|
377 |
|
378 |
if __name__ == "__main__":
|
379 |
-
|
|
|
1 |
import random
|
2 |
import datetime
|
3 |
import sys
|
|
|
|
|
|
|
4 |
import os
|
5 |
import torch
|
6 |
import logging
|
7 |
+
import json
|
8 |
from importlib.resources import files
|
9 |
+
from txagent import TxAgent
|
10 |
+
from tooluniverse import ToolUniverse
|
11 |
+
import gradio as gr
|
12 |
|
13 |
# Set up logging
|
14 |
logging.basicConfig(
|
|
|
20 |
# Determine the directory where the current file is located
|
21 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
22 |
os.environ["MKL_THREADING_LAYER"] = "GNU"
|
23 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
24 |
|
25 |
# Configuration
|
26 |
CONFIG = {
|
|
|
36 |
}
|
37 |
}
|
38 |
|
|
|
|
|
|
|
39 |
DESCRIPTION = '''
|
40 |
<div>
|
41 |
+
<h1 style="text-align: center;">TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools</h1>
|
42 |
</div>
|
43 |
'''
|
44 |
+
|
45 |
INTRO = """
|
46 |
+
Precision therapeutics require multimodal adaptive models that provide personalized treatment recommendations.
|
47 |
+
We introduce TxAgent, an AI agent that leverages multi-step reasoning and real-time biomedical knowledge
|
48 |
+
retrieval across a toolbox of 211 expert-curated tools to navigate complex drug interactions,
|
49 |
+
contraindications, and patient-specific treatment strategies, delivering evidence-grounded therapeutic decisions.
|
50 |
"""
|
51 |
|
52 |
LICENSE = """
|
53 |
+
We welcome your feedback and suggestions to enhance your experience with TxAgent, and if you're interested
|
54 |
+
in collaboration, please email Marinka Zitnik and Shanghua Gao.
|
55 |
|
56 |
### Medical Advice Disclaimer
|
57 |
DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE
|
58 |
+
The information, including but not limited to, text, graphics, images and other material contained on this
|
59 |
+
website are for informational purposes only. No material on this site is intended to be a substitute for
|
60 |
+
professional medical advice, diagnosis or treatment.
|
61 |
"""
|
62 |
|
63 |
PLACEHOLDER = """
|
64 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
65 |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">TxAgent</h1>
|
66 |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Tips before using TxAgent:</p>
|
67 |
+
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Please click clear🗑️ (top-right) to remove previous context before submitting a new question.</p>
|
68 |
+
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Click retry🔄 (below message) to get multiple versions of the answer.</p>
|
|
|
69 |
</div>
|
70 |
"""
|
71 |
|
|
|
94 |
"""
|
95 |
|
96 |
chat_css = """
|
97 |
+
.gr-button { font-size: 20px !important; }
|
98 |
+
.gr-button svg { width: 32px !important; height: 32px !important; }
|
99 |
"""
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def safe_load_embeddings(filepath: str) -> any:
|
102 |
"""Safely load embeddings with proper weights_only handling"""
|
103 |
try:
|
|
|
104 |
return torch.load(filepath, weights_only=True)
|
105 |
except Exception as e:
|
106 |
logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
|
107 |
try:
|
|
|
108 |
with torch.serialization.safe_globals([torch.serialization._reconstruct]):
|
109 |
return torch.load(filepath, weights_only=False)
|
110 |
except Exception as e:
|
|
|
124 |
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
|
125 |
return False
|
126 |
|
|
|
127 |
self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])
|
128 |
|
|
|
129 |
tools = tooluniverse.get_all_tools()
|
130 |
current_count = len(tools)
|
131 |
embedding_count = len(self.tool_desc_embedding)
|
|
|
139 |
else:
|
140 |
last_embedding = self.tool_desc_embedding[-1]
|
141 |
padding = [last_embedding] * (current_count - embedding_count)
|
142 |
+
self.tool_desc_embedding = torch.cat([self.tool_desc_embedding] + padding)
|
|
|
|
|
143 |
logger.info(f"Padded embeddings to match {current_count} tools")
|
144 |
|
145 |
return True
|
|
|
148 |
logger.error(f"Failed to load embeddings: {str(e)}")
|
149 |
return False
|
150 |
|
|
|
151 |
ToolRAGModel.load_tool_desc_embedding = patched_load
|
152 |
logger.info("Successfully patched embedding loading")
|
153 |
|
|
|
166 |
json.dump(tools, f, indent=2)
|
167 |
logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
|
168 |
|
169 |
+
def create_agent():
|
170 |
+
"""Create and initialize the TxAgent"""
|
171 |
+
# Apply the embedding patch before creating the agent
|
172 |
+
patch_embedding_loading()
|
173 |
+
prepare_tool_files()
|
174 |
+
|
175 |
+
# Initialize the agent
|
176 |
+
agent = TxAgent(
|
177 |
+
CONFIG["model_name"],
|
178 |
+
CONFIG["rag_model_name"],
|
179 |
+
tool_files_dict=CONFIG["tool_files"],
|
180 |
+
force_finish=True,
|
181 |
+
enable_checker=True,
|
182 |
+
step_rag_num=10,
|
183 |
+
seed=100,
|
184 |
+
additional_default_tools=['DirectResponse', 'RequireClarification']
|
185 |
+
)
|
186 |
+
agent.init_model()
|
187 |
+
return agent
|
188 |
+
|
189 |
+
def update_model_parameters(agent, enable_finish, enable_rag, enable_summary,
|
190 |
+
init_rag_num, step_rag_num, skip_last_k,
|
191 |
+
summary_mode, summary_skip_last_k, summary_context_length,
|
192 |
+
force_finish, seed):
|
193 |
+
"""Update model parameters"""
|
194 |
updated_params = agent.update_parameters(
|
195 |
enable_finish=enable_finish,
|
196 |
enable_rag=enable_rag,
|
|
|
204 |
force_finish=force_finish,
|
205 |
seed=seed,
|
206 |
)
|
|
|
207 |
return updated_params
|
208 |
|
209 |
+
def update_seed(agent):
|
210 |
+
"""Update random seed"""
|
211 |
seed = random.randint(0, 10000)
|
212 |
+
updated_params = agent.update_parameters(seed=seed)
|
|
|
|
|
213 |
return updated_params
|
214 |
|
215 |
+
def handle_retry(agent, history, retry_data: gr.RetryData, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
|
216 |
+
"""Handle retry functionality"""
|
217 |
+
print("Updated seed:", update_seed(agent))
|
218 |
new_history = history[:retry_data.index]
|
219 |
previous_prompt = history[retry_data.index]['content']
|
|
|
220 |
print("previous_prompt", previous_prompt)
|
221 |
+
yield from agent.run_gradio_chat(new_history + [{"role": "user", "content": previous_prompt}],
|
222 |
+
temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round)
|
223 |
|
224 |
PASSWORD = "mypassword"
|
225 |
|
226 |
def check_password(input_password):
|
227 |
+
"""Check password for protected settings"""
|
228 |
if input_password == PASSWORD:
|
229 |
return gr.update(visible=True), ""
|
230 |
else:
|
231 |
return gr.update(visible=False), "Incorrect password, try again!"
|
232 |
|
233 |
+
def create_demo(agent):
|
234 |
+
"""Create the Gradio interface"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
default_temperature = 0.3
|
236 |
default_max_new_tokens = 1024
|
237 |
default_max_tokens = 81920
|
238 |
default_max_round = 30
|
239 |
+
|
240 |
+
question_examples = [
|
241 |
+
['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of moderate hepatic impairment?'],
|
242 |
+
['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of severe hepatic impairment?'],
|
243 |
+
['A 30-year-old patient is taking Prozac to treat their depression. They were recently diagnosed with WHIM syndrome and require a treatment for that condition as well. Is Xolremdi suitable for this patient, considering contraindications?'],
|
244 |
+
]
|
245 |
+
|
246 |
+
chatbot = gr.Chatbot(height=800, placeholder=PLACEHOLDER,
|
247 |
+
label='TxAgent', type="messages", show_copy_button=True)
|
248 |
+
|
249 |
+
with gr.Blocks(css=css) as demo:
|
250 |
+
gr.Markdown(DESCRIPTION)
|
251 |
+
gr.Markdown(INTRO)
|
252 |
+
|
253 |
+
temperature_state = gr.State(value=default_temperature)
|
254 |
+
max_new_tokens_state = gr.State(value=default_max_new_tokens)
|
255 |
+
max_tokens_state = gr.State(value=default_max_tokens)
|
256 |
+
max_round_state = gr.State(value=default_max_round)
|
257 |
+
|
258 |
+
chatbot.retry(
|
259 |
+
lambda *args: handle_retry(agent, *args),
|
260 |
+
inputs=[chatbot, chatbot, temperature_state, max_new_tokens_state,
|
261 |
+
max_tokens_state, gr.Checkbox(value=False, render=False),
|
262 |
+
gr.State([]), max_round_state]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
+
gr.ChatInterface(
|
266 |
+
fn=lambda *args: agent.run_gradio_chat(*args),
|
267 |
+
chatbot=chatbot,
|
268 |
+
fill_height=True,
|
269 |
+
fill_width=True,
|
270 |
+
stop_btn=True,
|
271 |
+
additional_inputs_accordion=gr.Accordion(
|
272 |
+
label="⚙️ Inference Parameters", open=False, render=False),
|
273 |
+
additional_inputs=[
|
274 |
+
temperature_state, max_new_tokens_state, max_tokens_state,
|
275 |
+
gr.Checkbox(
|
276 |
+
label="Activate multi-agent reasoning mode",
|
277 |
+
value=False,
|
278 |
+
render=False),
|
279 |
+
gr.State([]),
|
280 |
+
max_round_state,
|
281 |
+
gr.Number(label="Seed", value=100, render=False)
|
282 |
+
],
|
283 |
+
examples=question_examples,
|
284 |
+
cache_examples=False,
|
285 |
+
css=chat_css,
|
286 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
+
with gr.Accordion("Settings", open=False):
|
289 |
+
temperature_slider = gr.Slider(
|
290 |
+
minimum=0,
|
291 |
+
maximum=1,
|
292 |
+
step=0.1,
|
293 |
+
value=default_temperature,
|
294 |
+
label="Temperature"
|
295 |
+
)
|
296 |
+
max_new_tokens_slider = gr.Slider(
|
297 |
+
minimum=128,
|
298 |
+
maximum=4096,
|
299 |
+
step=1,
|
300 |
+
value=default_max_new_tokens,
|
301 |
+
label="Max new tokens"
|
302 |
+
)
|
303 |
+
max_tokens_slider = gr.Slider(
|
304 |
+
minimum=128,
|
305 |
+
maximum=32000,
|
306 |
+
step=1,
|
307 |
+
value=default_max_tokens,
|
308 |
+
label="Max tokens"
|
309 |
+
)
|
310 |
+
max_round_slider = gr.Slider(
|
311 |
+
minimum=0,
|
312 |
+
maximum=50,
|
313 |
+
step=1,
|
314 |
+
value=default_max_round,
|
315 |
+
label="Max round")
|
316 |
+
|
317 |
+
temperature_slider.change(
|
318 |
+
lambda x: x, inputs=temperature_slider, outputs=temperature_state)
|
319 |
+
max_new_tokens_slider.change(
|
320 |
+
lambda x: x, inputs=max_new_tokens_slider, outputs=max_new_tokens_state)
|
321 |
+
max_tokens_slider.change(
|
322 |
+
lambda x: x, inputs=max_tokens_slider, outputs=max_tokens_state)
|
323 |
+
max_round_slider.change(
|
324 |
+
lambda x: x, inputs=max_round_slider, outputs=max_round_state)
|
325 |
+
|
326 |
+
password_input = gr.Textbox(
|
327 |
+
label="Enter Password for More Settings", type="password")
|
328 |
+
incorrect_message = gr.Textbox(visible=False, interactive=False)
|
329 |
+
|
330 |
+
with gr.Accordion("⚙️ Settings", open=False, visible=False) as protected_accordion:
|
331 |
+
with gr.Row():
|
332 |
+
with gr.Column(scale=1):
|
333 |
+
with gr.Accordion("⚙️ Model Loading", open=False):
|
334 |
+
model_name_input = gr.Textbox(
|
335 |
+
label="Enter model path", value=CONFIG["model_name"])
|
336 |
+
load_model_btn = gr.Button(value="Load Model")
|
337 |
+
load_model_btn.click(
|
338 |
+
agent.load_models,
|
339 |
+
inputs=model_name_input,
|
340 |
+
outputs=gr.Textbox(label="Status"))
|
341 |
+
with gr.Column(scale=1):
|
342 |
+
with gr.Accordion("⚙️ Functional Parameters", open=False):
|
343 |
+
enable_finish = gr.Checkbox(label="Enable Finish", value=True)
|
344 |
+
enable_rag = gr.Checkbox(label="Enable RAG", value=True)
|
345 |
+
enable_summary = gr.Checkbox(label="Enable Summary", value=False)
|
346 |
+
init_rag_num = gr.Number(label="Initial RAG Num", value=0)
|
347 |
+
step_rag_num = gr.Number(label="Step RAG Num", value=10)
|
348 |
+
skip_last_k = gr.Number(label="Skip Last K", value=0)
|
349 |
+
summary_mode = gr.Textbox(label="Summary Mode", value='step')
|
350 |
+
summary_skip_last_k = gr.Number(label="Summary Skip Last K", value=0)
|
351 |
+
summary_context_length = gr.Number(label="Summary Context Length", value=None)
|
352 |
+
force_finish = gr.Checkbox(label="Force FinalAnswer", value=True)
|
353 |
+
seed = gr.Number(label="Seed", value=100)
|
354 |
+
submit_btn = gr.Button("Update Parameters")
|
355 |
+
updated_parameters_output = gr.JSON()
|
356 |
+
submit_btn.click(
|
357 |
+
lambda *args: update_model_parameters(agent, *args),
|
358 |
+
inputs=[enable_finish, enable_rag, enable_summary,
|
359 |
+
init_rag_num, step_rag_num, skip_last_k,
|
360 |
+
summary_mode, summary_skip_last_k,
|
361 |
+
summary_context_length, force_finish, seed],
|
362 |
+
outputs=updated_parameters_output
|
363 |
+
)
|
364 |
+
|
365 |
+
submit_button = gr.Button("Submit")
|
366 |
+
submit_button.click(
|
367 |
+
check_password,
|
368 |
+
inputs=password_input,
|
369 |
+
outputs=[protected_accordion, incorrect_message]
|
370 |
+
)
|
371 |
+
|
372 |
+
gr.Markdown(LICENSE)
|
373 |
+
|
374 |
+
return demo
|
375 |
|
376 |
+
def main():
|
377 |
+
"""Main function to run the application"""
|
378 |
+
agent = create_agent()
|
379 |
+
demo = create_demo(agent)
|
380 |
+
demo.launch(share=True)
|
|
|
|
|
381 |
|
382 |
if __name__ == "__main__":
|
383 |
+
main()
|