import os import json import torch import logging import gradio as gr from importlib.resources import files from txagent import TxAgent from tooluniverse import ToolUniverse logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) os.environ["MKL_THREADING_LAYER"] = "GNU" os.environ["TOKENIZERS_PARALLELISM"] = "false" current_dir = os.path.dirname(os.path.abspath(__file__)) CONFIG = { "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B", "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", "embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt", "tool_files": { "opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')), "fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')), "special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')), "monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')), "new_tool": os.path.join(current_dir, 'data', 'new_tool.json') } } def safe_load_embeddings(filepath): try: return torch.load(filepath, weights_only=True) except Exception as e: logger.warning(f"Retrying with weights_only=False due to: {e}") try: return torch.load(filepath, weights_only=False) except Exception as e: logger.error(f"Failed to load embeddings: {e}") return None def patch_embedding_loading(): from txagent.toolrag import ToolRAGModel def patched_load(self, tooluniverse): try: if not os.path.exists(CONFIG["embedding_filename"]): return False self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"]) tools = tooluniverse.get_all_tools() if hasattr(tooluniverse, "get_all_tools") else getattr(tooluniverse, "tools", []) if len(tools) != len(self.tool_desc_embedding): logger.warning("Tool count mismatch.") self.tool_desc_embedding = self.tool_desc_embedding[:len(tools)] return True except Exception as e: logger.error(f"Embedding load failed: {e}") return False ToolRAGModel.load_tool_desc_embedding = patched_load def prepare_tool_files(): os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True) if not os.path.exists(CONFIG["tool_files"]["new_tool"]): try: tu = ToolUniverse() tools = tu.get_all_tools() if hasattr(tu, "get_all_tools") else getattr(tu, "tools", []) with open(CONFIG["tool_files"]["new_tool"], "w") as f: json.dump(tools, f, indent=2) except Exception as e: logger.error(f"Tool generation failed: {e}") def create_agent(): patch_embedding_loading() prepare_tool_files() try: agent = TxAgent( CONFIG["model_name"], CONFIG["rag_model_name"], tool_files_dict=CONFIG["tool_files"], force_finish=True, enable_checker=True, step_rag_num=10, seed=42, additional_default_tools=["DirectResponse", "RequireClarification"] ) agent.init_model() return agent except Exception as e: logger.error(f"Agent initialization failed: {e}") raise # ✅ FIXED: Proper message formatting def respond(msg, chat_history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): if not isinstance(msg, str) or len(msg.strip()) <= 10: return chat_history + [{"role": "assistant", "content": "Hi, I am TxAgent. Please provide a valid message longer than 10 characters."}] message = msg.strip() chat_history.append({"role": "user", "content": message}) formatted_history = [(m["role"], m["content"]) for m in chat_history] try: response_generator = agent.run_gradio_chat( message=message, history=formatted_history, temperature=temperature, max_new_tokens=max_new_tokens, max_token=max_tokens, call_agent=multi_agent, conversation=conversation, max_round=max_round, seed=42, call_agent_level=None, sub_agent_task=None ) collected = "" for chunk in response_generator: collected += chunk.get("content", "") if isinstance(chunk, dict) else str(chunk) chat_history.append({"role": "assistant", "content": collected}) except Exception as e: chat_history.append({"role": "assistant", "content": f"Error: {e}"}) return chat_history def create_demo(agent): with gr.Blocks(css=".gr-button { font-size: 18px !important; }") as demo: chatbot = gr.Chatbot(label="TxAgent", type="messages", render_markdown=True) msg = gr.Textbox(label="Your question", placeholder="Ask a biomedical question...", scale=6) with gr.Row(): temp = gr.Slider(0, 1, value=0.3, label="Temperature") max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens") max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens") max_rounds = gr.Slider(1, 30, value=30, label="Max Rounds") multi_agent = gr.Checkbox(label="Multi-Agent Mode") submit = gr.Button("Ask TxAgent") submit.click( respond, inputs=[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, gr.State([]), max_rounds], outputs=[chatbot] ) return demo def main(): global agent agent = create_agent() demo = create_demo(agent) demo.launch(share=False) if __name__ == "__main__": main()