File size: 6,747 Bytes
79fb3cd
4b0f1a8
b8c0ae3
79fb3cd
511fb62
9438945
511fb62
 
 
410d25f
79fb3cd
 
 
 
 
 
 
 
 
511fb62
12efdad
ae94627
59ced24
 
a87f861
ae94627
59ced24
9438945
 
 
 
79fb3cd
a87f861
12efdad
70839bb
ae94627
 
410d25f
ae94627
410d25f
 
ae94627
bae0943
e3711be
bae0943
6916257
bae0943
12efdad
ae94627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79fb3cd
e3711be
6916257
e3711be
 
ae94627
6916257
 
ae94627
 
 
 
 
6916257
ae94627
6916257
ae94627
e3711be
 
ae94627
e3711be
ae94627
6916257
 
ae94627
 
6916257
 
 
 
 
 
 
 
 
 
ae94627
6916257
 
ae94627
 
 
 
 
 
 
 
 
 
 
 
 
79fb3cd
511fb62
ae94627
 
 
 
 
 
 
 
6916257
ae94627
 
6916257
ae94627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6916257
ae94627
 
6916257
511fb62
79fb3cd
511fb62
ae94627
6916257
 
 
ae94627
6916257
 
 
70839bb
 
6916257
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import random
import os
import torch
import logging
import json
from importlib.resources import files
from txagent import TxAgent
from tooluniverse import ToolUniverse
import gradio as gr

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Configuration - Update paths as needed
CONFIG = {
    "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
    "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
    "embedding_filename": "path_to_your_embeddings.pt",  # Update this path
    "tool_files": {
        "opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
        "fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
        "special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
        "monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
        "new_tool": os.path.join(current_dir, 'data', 'new_tool.json')
    }
}

def safe_load_embeddings(filepath: str):
    """Handle embedding loading with fallbacks"""
    try:
        # Try with weights_only=True first
        return torch.load(filepath, weights_only=True)
    except Exception as e:
        logger.warning(f"Secure load failed, trying without weights_only: {str(e)}")
        try:
            return torch.load(filepath, weights_only=False)
        except Exception as e:
            logger.error(f"Failed to load embeddings: {str(e)}")
            return None

def get_tools_from_universe(tooluniverse):
    """Flexible tool extraction from ToolUniverse"""
    if hasattr(tooluniverse, 'get_all_tools'):
        return tooluniverse.get_all_tools()
    elif hasattr(tooluniverse, 'tools'):
        return tooluniverse.tools
    elif hasattr(tooluniverse, 'list_tools'):
        return tooluniverse.list_tools()
    else:
        logger.error("Could not find any tool access method in ToolUniverse")
        # Try to load from files directly as fallback
        tools = []
        for tool_file in CONFIG["tool_files"].values():
            if os.path.exists(tool_file):
                with open(tool_file, 'r') as f:
                    tools.extend(json.load(f))
        return tools if tools else None

def prepare_tool_files():
    """Ensure tool files exist and are populated"""
    os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True)
    if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
        logger.info("Generating tool list...")
        try:
            tu = ToolUniverse()
            tools = get_tools_from_universe(tu)
            if tools:
                with open(CONFIG["tool_files"]["new_tool"], "w") as f:
                    json.dump(tools, f, indent=2)
                logger.info(f"Saved {len(tools)} tools")
            else:
                logger.error("No tools could be loaded")
        except Exception as e:
            logger.error(f"Tool file preparation failed: {str(e)}")

def create_agent():
    """Create and initialize the TxAgent with robust error handling"""
    prepare_tool_files()
    
    try:
        agent = TxAgent(
            model_name=CONFIG["model_name"],
            rag_model_name=CONFIG["rag_model_name"],
            tool_files_dict=CONFIG["tool_files"],
            force_finish=True,
            enable_checker=True,
            step_rag_num=10,
            seed=100,
            additional_default_tools=['DirectResponse', 'RequireClarification']
        )
        agent.init_model()
        return agent
    except Exception as e:
        logger.error(f"Agent creation failed: {str(e)}")
        raise

def format_response(history, message):
    """Properly format responses for Gradio Chatbot"""
    if isinstance(message, (str, dict)):
        return history + [[None, str(message)]]
    elif hasattr(message, '__iter__'):
        full_response = ""
        for chunk in message:
            if isinstance(chunk, dict):
                full_response += chunk.get("content", "")
            else:
                full_response += str(chunk)
        return history + [[None, full_response]]
    return history + [[None, str(message)]]

def create_demo(agent):
    """Create the Gradio interface with proper message handling"""
    with gr.Blocks() as demo:
        chatbot = gr.Chatbot(
            height=800,
            label='TxAgent',
            show_copy_button=True,
            type="messages"  # Use the modern message format
        )
        
        msg = gr.Textbox(label="Input", placeholder="Type your question...")
        clear = gr.ClearButton([msg, chatbot])
        
        def respond(message, chat_history):
            try:
                # Convert Gradio history to agent format
                agent_history = []
                for user_msg, bot_msg in chat_history:
                    if user_msg:
                        agent_history.append({"role": "user", "content": user_msg})
                    if bot_msg:
                        agent_history.append({"role": "assistant", "content": bot_msg})
                
                # Get response from agent
                response = agent.run_gradio_chat(
                    agent_history + [{"role": "user", "content": message}],
                    temperature=0.3,
                    max_new_tokens=1024,
                    max_tokens=81920,
                    multi_agent=False,
                    conversation=[],
                    max_round=30
                )
                
                # Format the response properly
                full_response = ""
                for chunk in response:
                    if isinstance(chunk, dict):
                        full_response += chunk.get("content", "")
                    else:
                        full_response += str(chunk)
                
                return chat_history + [(message, full_response)]
            
            except Exception as e:
                logger.error(f"Error in response handling: {str(e)}")
                return chat_history + [(message, f"Error: {str(e)}")]

        msg.submit(respond, [msg, chatbot], [chatbot])
        clear.click(lambda: [], None, [chatbot])

    return demo

def main():
    """Main application entry point"""
    try:
        agent = create_agent()
        demo = create_demo(agent)
        demo.launch(server_name="0.0.0.0", server_port=7860)
    except Exception as e:
        logger.error(f"Application failed to start: {str(e)}")
        raise

if __name__ == "__main__":
    main()