File size: 7,644 Bytes
79fb3cd
709aba9
 
4b0f1a8
b8c0ae3
79fb3cd
511fb62
9438945
511fb62
 
 
410d25f
79fb3cd
 
 
 
 
 
 
 
 
511fb62
12efdad
59ced24
 
a87f861
fc30674
59ced24
9438945
 
 
 
79fb3cd
a87f861
12efdad
70839bb
709aba9
 
 
fc30674
 
709aba9
410d25f
 
 
709aba9
bae0943
e3711be
bae0943
6916257
bae0943
12efdad
709aba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79fb3cd
e3711be
 
 
709aba9
6916257
 
709aba9
 
 
 
6916257
709aba9
 
 
 
 
 
6916257
709aba9
e3711be
 
709aba9
e3711be
709aba9
6916257
 
709aba9
 
6916257
 
 
 
 
 
 
 
 
 
709aba9
6916257
 
709aba9
 
 
 
 
 
79fb3cd
709aba9
 
 
 
 
 
 
 
 
 
 
 
fc30674
709aba9
 
88ae38d
709aba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511fb62
79fb3cd
511fb62
6916257
709aba9
6916257
 
709aba9
6916257
 
 
70839bb
 
709aba9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import random
import datetime
import sys
import os
import torch
import logging
import json
from importlib.resources import files
from txagent import TxAgent
from tooluniverse import ToolUniverse
import gradio as gr

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"

CONFIG = {
    "model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
    "rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
    "embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
    "tool_files": {
        "opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
        "fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
        "special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
        "monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
        "new_tool": os.path.join(current_dir, 'data', 'new_tool.json')
    }
}

chat_css = """
.gr-button { font-size: 20px !important; }
.gr-button svg { width: 32px !important; height: 32px !important; }
"""

def safe_load_embeddings(filepath: str) -> any:
    try:
        return torch.load(filepath, weights_only=True)
    except Exception as e:
        logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
        try:
            return torch.load(filepath, weights_only=False)
        except Exception as e:
            logger.error(f"Failed to load embeddings: {str(e)}")
            return None

def patch_embedding_loading():
    try:
        from txagent.toolrag import ToolRAGModel

        def patched_load(self, tooluniverse):
            try:
                if not os.path.exists(CONFIG["embedding_filename"]):
                    logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
                    return False

                self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])

                if hasattr(tooluniverse, 'get_all_tools'):
                    tools = tooluniverse.get_all_tools()
                elif hasattr(tooluniverse, 'tools'):
                    tools = tooluniverse.tools
                else:
                    logger.error("No method found to access tools from ToolUniverse")
                    return False

                current_count = len(tools)
                embedding_count = len(self.tool_desc_embedding)

                if current_count != embedding_count:
                    logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})")

                    if current_count < embedding_count:
                        self.tool_desc_embedding = self.tool_desc_embedding[:current_count]
                        logger.info(f"Truncated embeddings to match {current_count} tools")
                    else:
                        last_embedding = self.tool_desc_embedding[-1]
                        padding = [last_embedding] * (current_count - embedding_count)
                        self.tool_desc_embedding = torch.cat([self.tool_desc_embedding] + padding)
                        logger.info(f"Padded embeddings to match {current_count} tools")

                return True

            except Exception as e:
                logger.error(f"Failed to load embeddings: {str(e)}")
                return False

        ToolRAGModel.load_tool_desc_embedding = patched_load
        logger.info("Successfully patched embedding loading")

    except Exception as e:
        logger.error(f"Failed to patch embedding loading: {str(e)}")
        raise

def prepare_tool_files():
    os.makedirs(os.path.join(current_dir, 'data'), exist_ok=True)
    if not os.path.exists(CONFIG["tool_files"]["new_tool"]):
        logger.info("Generating tool list using ToolUniverse...")
        try:
            tu = ToolUniverse()
            if hasattr(tu, 'get_all_tools'):
                tools = tu.get_all_tools()
            elif hasattr(tu, 'tools'):
                tools = tu.tools
            else:
                tools = []
                logger.error("Could not access tools from ToolUniverse")

            with open(CONFIG["tool_files"]["new_tool"], "w") as f:
                json.dump(tools, f, indent=2)
            logger.info(f"Saved {len(tools)} tools to {CONFIG['tool_files']['new_tool']}")
        except Exception as e:
            logger.error(f"Failed to prepare tool files: {str(e)}")

def create_agent():
    patch_embedding_loading()
    prepare_tool_files()

    try:
        agent = TxAgent(
            CONFIG["model_name"],
            CONFIG["rag_model_name"],
            tool_files_dict=CONFIG["tool_files"],
            force_finish=True,
            enable_checker=True,
            step_rag_num=10,
            seed=100,
            additional_default_tools=['DirectResponse', 'RequireClarification']
        )
        agent.init_model()
        return agent
    except Exception as e:
        logger.error(f"Failed to create agent: {str(e)}")
        raise

def respond(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
    updated_history = history + [{"role": "user", "content": message}]
    print("\n==== DEBUG ====")
    print("User Message:", message)
    print("Full History:", updated_history)
    print("================\n")

    try:
        # Ensure correct format for run_gradio_chat
        formatted_history = [(m["role"], m["content"]) for m in updated_history]

        response_generator = agent.run_gradio_chat(
            formatted_history,
            temperature,
            max_new_tokens,
            max_tokens,
            multi_agent,
            conversation,
            max_round
        )
    except Exception as e:
        return history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"Error: {str(e)}"}]

    collected = ""
    for chunk in response_generator:
        if isinstance(chunk, dict):
            collected += chunk.get("content", "")
        else:
            collected += str(chunk)

    return history + [{"role": "user", "content": message}, {"role": "assistant", "content": collected}]

def create_demo(agent):
    with gr.Blocks(css=chat_css) as demo:
        chatbot = gr.Chatbot(label="TxAgent", type="messages")
        with gr.Row():
            msg = gr.Textbox(label="Your question")
        with gr.Row():
            temp = gr.Slider(0, 1, value=0.3, label="Temperature")
            max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
            max_tokens = gr.Slider(128, 81920, value=81920, label="Max Total Tokens")
            max_rounds = gr.Slider(1, 30, value=30, label="Max Rounds")
            multi_agent = gr.Checkbox(label="Multi-Agent Mode")
        with gr.Row():
            submit = gr.Button("Ask TxAgent")

        submit.click(
            respond,
            inputs=[msg, chatbot, temp, max_new_tokens, max_tokens, multi_agent, gr.State([]), max_rounds],
            outputs=[chatbot]
        )
    return demo

def main():
    try:
        global agent
        agent = create_agent()
        demo = create_demo(agent)
        demo.launch()
    except Exception as e:
        logger.error(f"Application failed to start: {str(e)}")
        raise

if __name__ == "__main__":
    main()