File size: 15,445 Bytes
79fb3cd 4b0f1a8 b8c0ae3 79fb3cd 511fb62 9438945 511fb62 410d25f 79fb3cd 511fb62 12efdad bae0943 59ced24 a87f861 f2d6e83 59ced24 9438945 79fb3cd a87f861 12efdad 70839bb 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 4791a42 410d25f bae0943 12efdad 79fb3cd 2eb317a 79fb3cd 2eb317a 79fb3cd 2eb317a 79fb3cd 2eb317a 79fb3cd 2eb317a 79fb3cd 2eb317a 79fb3cd 511fb62 79fb3cd 2eb317a 79fb3cd 2eb317a 79fb3cd 2eb317a 79fb3cd 2eb317a 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 35da672 79fb3cd 511fb62 79fb3cd 511fb62 79fb3cd 511fb62 70839bb 511fb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import random
import datetime
import sys
import os
import torch
import logging
import json
from importlib.resources import files
from txagent import TxAgent
from tooluniverse import ToolUniverse
import gradio as gr
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Determine the directory where the current file is located
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Configuration
CONFIG = {
"model_name": "mims-harvard/TxAgent-T1-Llama-3.1-8B",
"rag_model_name": "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
"embedding_filename": "ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt",
"tool_files": {
"opentarget": str(files('tooluniverse.data').joinpath('opentarget_tools.json')),
"fda_drug_label": str(files('tooluniverse.data').joinpath('fda_drug_labeling_tools.json')),
"special_tools": str(files('tooluniverse.data').joinpath('special_tools.json')),
"monarch": str(files('tooluniverse.data').joinpath('monarch_tools.json')),
"new_tool": os.path.join(current_dir, 'data', 'new_tool.json')
}
}
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools</h1>
</div>
'''
INTRO = """
Precision therapeutics require multimodal adaptive models that provide personalized treatment recommendations.
We introduce TxAgent, an AI agent that leverages multi-step reasoning and real-time biomedical knowledge
retrieval across a toolbox of 211 expert-curated tools to navigate complex drug interactions,
contraindications, and patient-specific treatment strategies, delivering evidence-grounded therapeutic decisions.
"""
LICENSE = """
We welcome your feedback and suggestions to enhance your experience with TxAgent, and if you're interested
in collaboration, please email Marinka Zitnik and Shanghua Gao.
### Medical Advice Disclaimer
DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE
The information, including but not limited to, text, graphics, images and other material contained on this
website are for informational purposes only. No material on this site is intended to be a substitute for
professional medical advice, diagnosis or treatment.
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">TxAgent</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Tips before using TxAgent:</p>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Please click clear🗑️ (top-right) to remove previous context before submitting a new question.</p>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Click retry🔄 (below message) to get multiple versions of the answer.</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
.small-button button {
font-size: 12px !important;
padding: 4px 8px !important;
height: 6px !important;
width: 4px !important;
}
.gradio-accordion {
margin-top: 0px !important;
margin-bottom: 0px !important;
}
"""
chat_css = """
.gr-button { font-size: 20px !important; }
.gr-button svg { width: 32px !important; height: 32px !important; }
"""
def safe_load_embeddings(filepath: str) -> any:
"""Safely load embeddings with proper weights_only handling"""
try:
return torch.load(filepath, weights_only=True)
except Exception as e:
logger.warning(f"Secure load failed, trying with weights_only=False: {str(e)}")
try:
with torch.serialization.safe_globals([torch.serialization._reconstruct]):
return torch.load(filepath, weights_only=False)
except Exception as e:
logger.error(f"Failed to load embeddings even with safe_globals: {str(e)}")
return None
def patch_embedding_loading():
"""Monkey-patch the embedding loading functionality"""
try:
from txagent.toolrag import ToolRAGModel
original_load = ToolRAGModel.load_tool_desc_embedding
def patched_load(self, tooluniverse):
try:
if not os.path.exists(CONFIG["embedding_filename"]):
logger.error(f"Embedding file not found: {CONFIG['embedding_filename']}")
return False
self.tool_desc_embedding = safe_load_embeddings(CONFIG["embedding_filename"])
if self.tool_desc_embedding is None:
logger.error("Embedding is None, aborting.")
return False
# Ensure tools is a list (in case it's a generator)
tools = list(tooluniverse.get_all_tools()) if hasattr(tooluniverse, 'get_all_tools') else []
current_count = len(tools)
embedding_count = len(self.tool_desc_embedding)
if current_count != embedding_count:
logger.warning(f"Tool count mismatch (tools: {current_count}, embeddings: {embedding_count})")
if current_count < embedding_count:
self.tool_desc_embedding = self.tool_desc_embedding[:current_count]
logger.info(f"Truncated embeddings to match {current_count} tools")
else:
last_embedding = self.tool_desc_embedding[-1]
padding = [last_embedding] * (current_count - embedding_count)
self.tool_desc_embedding = torch.cat([self.tool_desc_embedding] + padding)
logger.info(f"Padded embeddings to match {current_count} tools")
return True
except Exception as e:
logger.error(f"Failed to load embeddings: {str(e)}")
return False
ToolRAGModel.load_tool_desc_embedding = patched_load
logger.info("Successfully patched embedding loading")
except Exception as e:
logger.error(f"Failed to patch embedding loading: {str(e)}")
raise
def update_model_parameters(agent, enable_finish, enable_rag, enable_summary,
init_rag_num, step_rag_num, skip_last_k,
summary_mode, summary_skip_last_k, summary_context_length,
force_finish, seed):
"""Update model parameters"""
updated_params = agent.update_parameters(
enable_finish=enable_finish,
enable_rag=enable_rag,
enable_summary=enable_summary,
init_rag_num=init_rag_num,
step_rag_num=step_rag_num,
skip_last_k=skip_last_k,
summary_mode=summary_mode,
summary_skip_last_k=summary_skip_last_k,
summary_context_length=summary_context_length,
force_finish=force_finish,
seed=seed,
)
return updated_params
def update_seed(agent):
"""Update random seed"""
seed = random.randint(0, 10000)
updated_params = agent.update_parameters(seed=seed)
return updated_params
def handle_retry(agent, history, retry_data: gr.RetryData, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
"""Handle retry functionality"""
print("Updated seed:", update_seed(agent))
new_history = history[:retry_data.index]
previous_prompt = history[retry_data.index]['content']
print("previous_prompt", previous_prompt)
yield from agent.run_gradio_chat(new_history + [{"role": "user", "content": previous_prompt}],
temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round)
PASSWORD = "mypassword"
def check_password(input_password):
"""Check password for protected settings"""
if input_password == PASSWORD:
return gr.update(visible=True), ""
else:
return gr.update(visible=False), "Incorrect password, try again!"
def create_demo(agent):
"""Create the Gradio interface"""
default_temperature = 0.3
default_max_new_tokens = 1024
default_max_tokens = 81920
default_max_round = 30
question_examples = [
['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of moderate hepatic impairment?'],
['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of severe hepatic impairment?'],
['A 30-year-old patient is taking Prozac to treat their depression. They were recently diagnosed with WHIM syndrome and require a treatment for that condition as well. Is Xolremdi suitable for this patient, considering contraindications?'],
]
chatbot = gr.Chatbot(height=800, placeholder=PLACEHOLDER,
label='TxAgent', type="messages", show_copy_button=True)
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(INTRO)
temperature_state = gr.State(value=default_temperature)
max_new_tokens_state = gr.State(value=default_max_new_tokens)
max_tokens_state = gr.State(value=default_max_tokens)
max_round_state = gr.State(value=default_max_round)
chatbot.retry(
lambda *args: handle_retry(agent, *args),
inputs=[chatbot, chatbot, temperature_state, max_new_tokens_state,
max_tokens_state, gr.Checkbox(value=False, render=False),
gr.State([]), max_round_state]
)
gr.ChatInterface(
fn=lambda *args: agent.run_gradio_chat(*args),
chatbot=chatbot,
fill_height=True,
fill_width=True,
stop_btn=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Inference Parameters", open=False, render=False),
additional_inputs=[
temperature_state, max_new_tokens_state, max_tokens_state,
gr.Checkbox(
label="Activate multi-agent reasoning mode",
value=False,
render=False),
gr.State([]),
max_round_state,
gr.Number(label="Seed", value=100, render=False)
],
examples=question_examples,
cache_examples=False,
css=chat_css,
)
with gr.Accordion("Settings", open=False):
temperature_slider = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=default_temperature,
label="Temperature"
)
max_new_tokens_slider = gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=default_max_new_tokens,
label="Max new tokens"
)
max_tokens_slider = gr.Slider(
minimum=128,
maximum=32000,
step=1,
value=default_max_tokens,
label="Max tokens"
)
max_round_slider = gr.Slider(
minimum=0,
maximum=50,
step=1,
value=default_max_round,
label="Max round")
temperature_slider.change(
lambda x: x, inputs=temperature_slider, outputs=temperature_state)
max_new_tokens_slider.change(
lambda x: x, inputs=max_new_tokens_slider, outputs=max_new_tokens_state)
max_tokens_slider.change(
lambda x: x, inputs=max_tokens_slider, outputs=max_tokens_state)
max_round_slider.change(
lambda x: x, inputs=max_round_slider, outputs=max_round_state)
password_input = gr.Textbox(
label="Enter Password for More Settings", type="password")
incorrect_message = gr.Textbox(visible=False, interactive=False)
with gr.Accordion("⚙️ Settings", open=False, visible=False) as protected_accordion:
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("⚙️ Model Loading", open=False):
model_name_input = gr.Textbox(
label="Enter model path", value=CONFIG["model_name"])
load_model_btn = gr.Button(value="Load Model")
load_model_btn.click(
agent.load_models,
inputs=model_name_input,
outputs=gr.Textbox(label="Status"))
with gr.Column(scale=1):
with gr.Accordion("⚙️ Functional Parameters", open=False):
enable_finish = gr.Checkbox(label="Enable Finish", value=True)
enable_rag = gr.Checkbox(label="Enable RAG", value=True)
enable_summary = gr.Checkbox(label="Enable Summary", value=False)
init_rag_num = gr.Number(label="Initial RAG Num", value=0)
step_rag_num = gr.Number(label="Step RAG Num", value=10)
skip_last_k = gr.Number(label="Skip Last K", value=0)
summary_mode = gr.Textbox(label="Summary Mode", value='step')
summary_skip_last_k = gr.Number(label="Summary Skip Last K", value=0)
summary_context_length = gr.Number(label="Summary Context Length", value=None)
force_finish = gr.Checkbox(label="Force FinalAnswer", value=True)
seed = gr.Number(label="Seed", value=100)
submit_btn = gr.Button("Update Parameters")
updated_parameters_output = gr.JSON()
submit_btn.click(
lambda *args: update_model_parameters(agent, *args),
inputs=[enable_finish, enable_rag, enable_summary,
init_rag_num, step_rag_num, skip_last_k,
summary_mode, summary_skip_last_k,
summary_context_length, force_finish, seed],
outputs=updated_parameters_output
)
submit_button = gr.Button("Submit")
submit_button.click(
check_password,
inputs=password_input,
outputs=[protected_accordion, incorrect_message]
)
gr.Markdown(LICENSE)
return demo
def main():
"""Main function to run the application"""
agent = create_agent()
demo = create_demo(agent)
demo.launch(share=True)
if __name__ == "__main__":
main() |