Alfred_LLM / tools.py
Aly Mostafa
Add files via upload
8c6e3b3 unverified
from langchain_community.tools import DuckDuckGoSearchRun
from typing import TypedDict,Annotated
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage ,HumanMessage,AIMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import START,StateGraph
from langgraph.prebuilt import tools_condition
from langchain_groq import ChatGroq
from langchain.tools import Tool
from huggingface_hub import list_models
import random
from dotenv import load_dotenv
import os
from langchain_community.utilities import SerpAPIWrapper
load_dotenv()
os.environ["GROQ_API_KEY"]=os.getenv("GROQ_API_KEY")
#os.environ["SERPAPI_API_KEY"]=os.getenv("SERPAPI_API_KEY")
groq_api_key=os.getenv("GROQ_API_KEY")
serp_api_key=os.getenv("SERPAPI_API_KEY")
from langchain_community.utilities import SerpAPIWrapper
search = SerpAPIWrapper(serpapi_api_key=serp_api_key)
search_tool = Tool(
name="SerpAPI Search",
func=search.run,
description="Search the web using SerpAPI"
)
### weather tool
def get_weather_info(location: str) -> str:
"""Fetches dummy weather information for a given location."""
# Dummy weather data
weather_conditions = [
{"condition": "Rainy", "temp_c": 15},
{"condition": "Clear", "temp_c": 25},
{"condition": "Windy", "temp_c": 20}
]
# Randomly select a weather condition
data = random.choice(weather_conditions)
return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
# Initialize the tool
weather_info_tool = Tool(
name="get_weather_info",
func=get_weather_info,
description="Fetches dummy weather information for a given location."
)
##most downloaded
def get_hub_stats(author: str) -> str:
"""Fetches the most downloaded model from a specific author on the Hugging Face Hub."""
try:
# List models from the specified author, sorted by downloads
models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
if models:
model = models[0]
return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
else:
return f"No models found for author {author}."
except Exception as e:
return f"Error fetching models for {author}: {str(e)}"
# Initialize the tool
hub_stats_tool = Tool(
name="get_hub_stats",
func=get_hub_stats,
description="Fetches the most downloaded model from a specific author on the Hugging Face Hub."
)
### langchain
import datasets
from langchain.docstore.document import Document
from langchain_community.retrievers import BM25Retriever
from langchain.tools import Tool
from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage,HumanMessage,AIMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import START,StateGraph
from langgraph.prebuilt import tools_condition
from langchain_huggingface import HuggingFaceEndpoint ,ChatHuggingFace
from dotenv import load_dotenv
from langchain_groq import ChatGroq
import os
load_dotenv()
os.environ["GROQ_API_KEY"]=os.getenv("GROQ_API_KEY")
groq_api_key=os.getenv("GROQ_API_KEY")
# Load the dataset
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
# Convert dataset entries into Document objects
docs = [
Document(
page_content="\n".join([
f"Name: {guest['name']}",
f"Relation: {guest['relation']}",
f"Description: {guest['description']}",
f"Email: {guest['email']}"
]),
metadata={"name": guest["name"]}
)
for guest in guest_dataset
]
bm25_retriever = BM25Retriever.from_documents(docs)
def extract_text(query: str) -> str:
"""Retrieves detailed information about gala guests based on their name or relation."""
results = bm25_retriever.invoke(query)
if results:
return "\n\n".join([doc.page_content for doc in results[:3]])
else:
return "No matching guest information found."
guest_info_tool = Tool(
name="guest_info_retriever",
func=extract_text,
description="Retrieves detailed information about gala guests based on their name or relation."
)
# Generate the chat interface , including the tools
llm = ChatGroq(model="Gemma2-9b-It",groq_api_key=groq_api_key)
tools = [guest_info_tool,search_tool,weather_info_tool,hub_stats_tool]
llm_with_tools = llm.bind_tools(tools)
# Generate the AgentState and Agent graph
class AgentState(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
def assistant(state: AgentState):
return {
"messages": [llm_with_tools.invoke(state["messages"])],
}
## The graph
builder = StateGraph(AgentState)
# Define nodes: these do the work
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
# Define edges: these determine how the control flow moves
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
"assistant",
# If the latest message requires a tool, route to tools
# Otherwise, provide a direct response
tools_condition,
)
builder.add_edge("tools", "assistant")
alfred = builder.compile()
messages = [HumanMessage(content="Tell me about our guest named 'Lady Ada Lovelace'.")]
response = alfred.invoke({"messages": messages})