Spaces:
Configuration error
Configuration error
Aly Mostafa
commited on
Add files via upload
Browse files
alfred.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# alfred_streamlit.py
|
2 |
+
import streamlit as st
|
3 |
+
from langchain_core.messages import HumanMessage
|
4 |
+
from tools import alfred # Import your LangGraph agent
|
5 |
+
|
6 |
+
st.set_page_config(page_title="🕵️ Alfred - AI Assistant", page_icon="🎩")
|
7 |
+
|
8 |
+
st.title("🎩 Alfred - Your AI Assistant")
|
9 |
+
st.markdown("Ask Alfred anything. He’s connected to weather, search, model stats, and even your guest list!")
|
10 |
+
|
11 |
+
if "chat_history" not in st.session_state:
|
12 |
+
st.session_state.chat_history = []
|
13 |
+
|
14 |
+
# Chat input
|
15 |
+
user_input = st.chat_input("Ask Alfred...")
|
16 |
+
|
17 |
+
if user_input:
|
18 |
+
st.session_state.chat_history.append(HumanMessage(content=user_input))
|
19 |
+
with st.spinner("Alfred is thinking..."):
|
20 |
+
response = alfred.invoke({"messages": st.session_state.chat_history})
|
21 |
+
ai_response = response['messages'][-1].content
|
22 |
+
st.session_state.chat_history.append(response['messages'][-1])
|
23 |
+
|
24 |
+
# Display chat history
|
25 |
+
for msg in st.session_state.chat_history:
|
26 |
+
role = "🤵 Alfred" if msg.type == "ai" else "🧑 You"
|
27 |
+
st.chat_message(role).markdown(msg.content)
|
tools.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
2 |
+
from typing import TypedDict,Annotated
|
3 |
+
from langgraph.graph.message import add_messages
|
4 |
+
from langchain_core.messages import AnyMessage ,HumanMessage,AIMessage
|
5 |
+
from langgraph.prebuilt import ToolNode
|
6 |
+
from langgraph.graph import START,StateGraph
|
7 |
+
from langgraph.prebuilt import tools_condition
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain.tools import Tool
|
10 |
+
from huggingface_hub import list_models
|
11 |
+
import random
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
import os
|
14 |
+
from langchain_community.utilities import SerpAPIWrapper
|
15 |
+
load_dotenv()
|
16 |
+
os.environ["GROQ_API_KEY"]=os.getenv("GROQ_API_KEY")
|
17 |
+
#os.environ["SERPAPI_API_KEY"]=os.getenv("SERPAPI_API_KEY")
|
18 |
+
groq_api_key=os.getenv("GROQ_API_KEY")
|
19 |
+
serp_api_key=os.getenv("SERPAPI_API_KEY")
|
20 |
+
|
21 |
+
from langchain_community.utilities import SerpAPIWrapper
|
22 |
+
|
23 |
+
search = SerpAPIWrapper(serpapi_api_key=serp_api_key)
|
24 |
+
search_tool = Tool(
|
25 |
+
name="SerpAPI Search",
|
26 |
+
func=search.run,
|
27 |
+
description="Search the web using SerpAPI"
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
### weather tool
|
35 |
+
def get_weather_info(location: str) -> str:
|
36 |
+
"""Fetches dummy weather information for a given location."""
|
37 |
+
# Dummy weather data
|
38 |
+
weather_conditions = [
|
39 |
+
{"condition": "Rainy", "temp_c": 15},
|
40 |
+
{"condition": "Clear", "temp_c": 25},
|
41 |
+
{"condition": "Windy", "temp_c": 20}
|
42 |
+
]
|
43 |
+
# Randomly select a weather condition
|
44 |
+
data = random.choice(weather_conditions)
|
45 |
+
return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
|
46 |
+
|
47 |
+
# Initialize the tool
|
48 |
+
weather_info_tool = Tool(
|
49 |
+
name="get_weather_info",
|
50 |
+
func=get_weather_info,
|
51 |
+
description="Fetches dummy weather information for a given location."
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
##most downloaded
|
57 |
+
def get_hub_stats(author: str) -> str:
|
58 |
+
"""Fetches the most downloaded model from a specific author on the Hugging Face Hub."""
|
59 |
+
try:
|
60 |
+
# List models from the specified author, sorted by downloads
|
61 |
+
models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
|
62 |
+
|
63 |
+
if models:
|
64 |
+
model = models[0]
|
65 |
+
return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
|
66 |
+
else:
|
67 |
+
return f"No models found for author {author}."
|
68 |
+
except Exception as e:
|
69 |
+
return f"Error fetching models for {author}: {str(e)}"
|
70 |
+
|
71 |
+
# Initialize the tool
|
72 |
+
hub_stats_tool = Tool(
|
73 |
+
name="get_hub_stats",
|
74 |
+
func=get_hub_stats,
|
75 |
+
description="Fetches the most downloaded model from a specific author on the Hugging Face Hub."
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
### langchain
|
88 |
+
import datasets
|
89 |
+
from langchain.docstore.document import Document
|
90 |
+
from langchain_community.retrievers import BM25Retriever
|
91 |
+
from langchain.tools import Tool
|
92 |
+
from typing import TypedDict, Annotated
|
93 |
+
from langgraph.graph.message import add_messages
|
94 |
+
from langchain_core.messages import AnyMessage,HumanMessage,AIMessage
|
95 |
+
from langgraph.prebuilt import ToolNode
|
96 |
+
from langgraph.graph import START,StateGraph
|
97 |
+
from langgraph.prebuilt import tools_condition
|
98 |
+
from langchain_huggingface import HuggingFaceEndpoint ,ChatHuggingFace
|
99 |
+
from dotenv import load_dotenv
|
100 |
+
from langchain_groq import ChatGroq
|
101 |
+
import os
|
102 |
+
load_dotenv()
|
103 |
+
os.environ["GROQ_API_KEY"]=os.getenv("GROQ_API_KEY")
|
104 |
+
groq_api_key=os.getenv("GROQ_API_KEY")
|
105 |
+
# Load the dataset
|
106 |
+
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
|
107 |
+
|
108 |
+
# Convert dataset entries into Document objects
|
109 |
+
docs = [
|
110 |
+
Document(
|
111 |
+
page_content="\n".join([
|
112 |
+
f"Name: {guest['name']}",
|
113 |
+
f"Relation: {guest['relation']}",
|
114 |
+
f"Description: {guest['description']}",
|
115 |
+
f"Email: {guest['email']}"
|
116 |
+
]),
|
117 |
+
metadata={"name": guest["name"]}
|
118 |
+
)
|
119 |
+
for guest in guest_dataset
|
120 |
+
]
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
bm25_retriever = BM25Retriever.from_documents(docs)
|
128 |
+
|
129 |
+
def extract_text(query: str) -> str:
|
130 |
+
"""Retrieves detailed information about gala guests based on their name or relation."""
|
131 |
+
results = bm25_retriever.invoke(query)
|
132 |
+
if results:
|
133 |
+
return "\n\n".join([doc.page_content for doc in results[:3]])
|
134 |
+
else:
|
135 |
+
return "No matching guest information found."
|
136 |
+
|
137 |
+
guest_info_tool = Tool(
|
138 |
+
name="guest_info_retriever",
|
139 |
+
func=extract_text,
|
140 |
+
description="Retrieves detailed information about gala guests based on their name or relation."
|
141 |
+
)
|
142 |
+
|
143 |
+
# Generate the chat interface , including the tools
|
144 |
+
llm = ChatGroq(model="Gemma2-9b-It",groq_api_key=groq_api_key)
|
145 |
+
tools = [guest_info_tool,search_tool,weather_info_tool,hub_stats_tool]
|
146 |
+
llm_with_tools = llm.bind_tools(tools)
|
147 |
+
|
148 |
+
# Generate the AgentState and Agent graph
|
149 |
+
class AgentState(TypedDict):
|
150 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
151 |
+
|
152 |
+
def assistant(state: AgentState):
|
153 |
+
return {
|
154 |
+
"messages": [llm_with_tools.invoke(state["messages"])],
|
155 |
+
}
|
156 |
+
|
157 |
+
## The graph
|
158 |
+
builder = StateGraph(AgentState)
|
159 |
+
|
160 |
+
# Define nodes: these do the work
|
161 |
+
builder.add_node("assistant", assistant)
|
162 |
+
builder.add_node("tools", ToolNode(tools))
|
163 |
+
|
164 |
+
# Define edges: these determine how the control flow moves
|
165 |
+
builder.add_edge(START, "assistant")
|
166 |
+
builder.add_conditional_edges(
|
167 |
+
"assistant",
|
168 |
+
# If the latest message requires a tool, route to tools
|
169 |
+
# Otherwise, provide a direct response
|
170 |
+
tools_condition,
|
171 |
+
)
|
172 |
+
builder.add_edge("tools", "assistant")
|
173 |
+
alfred = builder.compile()
|
174 |
+
|
175 |
+
messages = [HumanMessage(content="Tell me about our guest named 'Lady Ada Lovelace'.")]
|
176 |
+
response = alfred.invoke({"messages": messages})
|
177 |
+
|
178 |
+
|
179 |
+
|