File size: 5,588 Bytes
8c6e3b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from langchain_community.tools import DuckDuckGoSearchRun
from typing import TypedDict,Annotated
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage ,HumanMessage,AIMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import START,StateGraph
from langgraph.prebuilt import tools_condition
from langchain_groq import ChatGroq
from langchain.tools import Tool
from huggingface_hub import list_models
import random
from dotenv import load_dotenv
import os
from langchain_community.utilities import  SerpAPIWrapper
load_dotenv()
os.environ["GROQ_API_KEY"]=os.getenv("GROQ_API_KEY")
#os.environ["SERPAPI_API_KEY"]=os.getenv("SERPAPI_API_KEY")
groq_api_key=os.getenv("GROQ_API_KEY")
serp_api_key=os.getenv("SERPAPI_API_KEY")

from langchain_community.utilities import SerpAPIWrapper

search = SerpAPIWrapper(serpapi_api_key=serp_api_key)
search_tool = Tool(
    name="SerpAPI Search",
    func=search.run,
    description="Search the web using SerpAPI"
)

    



### weather tool
def get_weather_info(location: str) -> str:
    """Fetches dummy weather information for a given location."""
    # Dummy weather data
    weather_conditions = [
        {"condition": "Rainy", "temp_c": 15},
        {"condition": "Clear", "temp_c": 25},
        {"condition": "Windy", "temp_c": 20}
    ]
    # Randomly select a weather condition
    data = random.choice(weather_conditions)
    return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"

# Initialize the tool
weather_info_tool = Tool(
    name="get_weather_info",
    func=get_weather_info,
    description="Fetches dummy weather information for a given location."
)



##most downloaded 
def get_hub_stats(author: str) -> str:
    """Fetches the most downloaded model from a specific author on the Hugging Face Hub."""
    try:
        # List models from the specified author, sorted by downloads
        models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))

        if models:
            model = models[0]
            return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
        else:
            return f"No models found for author {author}."
    except Exception as e:
        return f"Error fetching models for {author}: {str(e)}"

# Initialize the tool
hub_stats_tool = Tool(
    name="get_hub_stats",
    func=get_hub_stats,
    description="Fetches the most downloaded model from a specific author on the Hugging Face Hub."
)










### langchain
import datasets
from langchain.docstore.document import Document
from langchain_community.retrievers import BM25Retriever
from langchain.tools import Tool
from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
from langchain_core.messages import AnyMessage,HumanMessage,AIMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import START,StateGraph
from langgraph.prebuilt import tools_condition
from langchain_huggingface import HuggingFaceEndpoint ,ChatHuggingFace
from dotenv import load_dotenv
from langchain_groq import ChatGroq
import os
load_dotenv()
os.environ["GROQ_API_KEY"]=os.getenv("GROQ_API_KEY")
groq_api_key=os.getenv("GROQ_API_KEY")
# Load the dataset
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")

# Convert dataset entries into Document objects
docs = [
    Document(
        page_content="\n".join([
            f"Name: {guest['name']}",
            f"Relation: {guest['relation']}",
            f"Description: {guest['description']}",
            f"Email: {guest['email']}"
        ]),
        metadata={"name": guest["name"]}
    )
    for guest in guest_dataset
]






bm25_retriever = BM25Retriever.from_documents(docs)

def extract_text(query: str) -> str:
    """Retrieves detailed information about gala guests based on their name or relation."""
    results = bm25_retriever.invoke(query)
    if results:
        return "\n\n".join([doc.page_content for doc in results[:3]])
    else:
        return "No matching guest information found."

guest_info_tool = Tool(
    name="guest_info_retriever",
    func=extract_text,
    description="Retrieves detailed information about gala guests based on their name or relation."
)

# Generate the chat interface , including the tools
llm = ChatGroq(model="Gemma2-9b-It",groq_api_key=groq_api_key)
tools = [guest_info_tool,search_tool,weather_info_tool,hub_stats_tool]
llm_with_tools = llm.bind_tools(tools)

# Generate the AgentState and Agent graph
class AgentState(TypedDict):
    messages: Annotated[list[AnyMessage], add_messages]

def assistant(state: AgentState):
    return {
        "messages": [llm_with_tools.invoke(state["messages"])],
    }

## The graph
builder = StateGraph(AgentState)

# Define nodes: these do the work
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))

# Define edges: these determine how the control flow moves
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
    "assistant",
    # If the latest message requires a tool, route to tools
    # Otherwise, provide a direct response
    tools_condition,
)
builder.add_edge("tools", "assistant")
alfred = builder.compile()

messages = [HumanMessage(content="Tell me about our guest named 'Lady Ada Lovelace'.")]
response = alfred.invoke({"messages": messages})