Spaces:
Runtime error
Runtime error
File size: 7,389 Bytes
8aaa2cd 3f1e89d 611f7d6 1dd8d6e 611f7d6 4828bb7 9189f01 2229639 9189f01 611f7d6 9744f8e 611f7d6 d665e1b 8ce060c 611f7d6 6d9676e 611f7d6 8389bd2 611f7d6 6d9676e 611f7d6 6cfb433 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
#duplicated from https://huggingface.co/spaces/chheplo/DeepSeek-R1-Distill-Llama-8B
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">deepseek-ai/DeepSeek-R1-Distill-Llama-8B</h1>
</div>
'''
LICENSE = """
<p/>
---
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepSeek-R1-Distill-Llama-8B</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
model_id = "AXCXEPT/phi-4-deepseek-R1K-RL-EZO"
model_id = "AXCXEPT/phi-4-open-R1-Distill-EZOv1"
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id) # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
#print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False ),
],
examples=[
['How to setup a human base on Mars? Give short answer.'],
['Explain theory of relativity to me like Iβm 8 years old.'],
['What is 9,000 * 9,000?'],
['Write a pun-filled happy birthday message to my friend Alex.'],
['Justify why a penguin might make a good king of the jungle.']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
import spaces
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from transformers import TextIteratorStreamer
from threading import Thread
import gradio as gr
text_generator = None
is_hugging_face = True
model_id = "AXCXEPT/phi-4-deepseek-R1K-RL-EZO"
model_id = "AXCXEPT/phi-4-open-R1-Distill-EZOv1"
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
huggingface_token = None
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda"
dtype = torch.bfloat16
dtype = torch.float16
if not huggingface_token:
pass
print("no HUGGINGFACE_TOKEN if you need set secret ")
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
print(model_id,device,dtype)
histories = []
#model = None
if not is_hugging_face:
model = AutoModelForCausalLM.from_pretrained(
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
)
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device,stream=True ) #pipeline has not to(device)
if next(model.parameters()).is_cuda:
print("The model is on a GPU")
else:
print("The model is on a CPU")
#print(f"text_generator.device='{text_generator.device}")
if str(text_generator.device).strip() == 'cuda':
print("The pipeline is using a GPU")
else:
print("The pipeline is using a CPU")
print("initialized")
def generate_text(messages):
if is_hugging_face:#need everytime initialize for ZeroGPU
model = AutoModelForCausalLM.from_pretrained(
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
)
model.to(device)
question = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
question = tokenizer(question, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
generation_kwargs = dict(question, streamer=streamer, max_new_tokens=200)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
generated_output = ""
thread.start()
for new_text in streamer:
generated_output += new_text
yield generated_output
generate_text.zerogpu = True
@spaces.GPU(duration=60)
def call_generate_text(message, history):
# history.append({"role": "user", "content": message})
#print(message)
#print(history)
messages = history+[{"role":"user","content":message}]
try:
for text in generate_text(messages):
yield text
except RuntimeError as e:
print(f"An unexpected error occurred: {e}")
yield ""
demo = gr.ChatInterface(call_generate_text,type="messages")
#if __name__ == "__main__":
demo.queue()
demo.launch() |