Akjava commited on
Commit
8ce060c
Β·
verified Β·
1 Parent(s): 28a3da2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -83
app.py CHANGED
@@ -1,90 +1,66 @@
1
- import spaces
2
- import os
3
- import torch
4
- from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
5
- from transformers import TextStreamer
6
  import gradio as gr
 
7
 
8
- text_generator = None
9
- is_hugging_face = True
10
- model_id = "google/gemma-2-9b-it"
11
- model_id = "google/gemma-2-2b-it"
12
- huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
13
- device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
- device = "cuda"
15
- dtype = torch.bfloat16
16
-
17
- if not huggingface_token:
18
- pass
19
- print("no HUGGINGFACE_TOKEN if you need set secret ")
20
- #raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
- tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
30
-
31
- print(model_id,device,dtype)
32
- histories = []
33
- #model = None
34
-
35
-
36
-
37
- if not is_hugging_face:
38
- model = AutoModelForCausalLM.from_pretrained(
39
- model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
40
- )
41
- text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device,stream=True ) #pipeline has not to(device)
42
-
43
- if next(model.parameters()).is_cuda:
44
- print("The model is on a GPU")
45
- else:
46
- print("The model is on a CPU")
47
-
48
- #print(f"text_generator.device='{text_generator.device}")
49
- if str(text_generator.device).strip() == 'cuda':
50
- print("The pipeline is using a GPU")
51
- else:
52
- print("The pipeline is using a CPU")
53
-
54
- print("initialized")
55
 
56
  @spaces.GPU(duration=60)
57
- def generate_text(messages):
58
- if is_hugging_face:#need everytime initialize for ZeroGPU
59
- model = AutoModelForCausalLM.from_pretrained(
60
- model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
61
- )
62
- streamer = TextStreamer(tokenizer, skip_prompt=True)
63
- text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ,streamer=streamer,model_kwargs={"stream": True} ) #pipeline has not to(device)
64
- result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7)
65
- print(f"result={result}")
66
- generated_output = ""
67
- for token in result:
68
- print(f"token={token}")
69
- generated_output += token["text"]
70
- yield generated_output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
 
73
- def call_generate_text(message, history):
74
- # history.append({"role": "user", "content": message})
75
- print(message)
76
- print(history)
77
-
78
- messages = history+[{"role":"user","content":message}]
79
- try:
80
-
81
- for text in generate_text(messages):
82
- yield text
83
- except RuntimeError as e:
84
- print(f"An unexpected error occurred: {e}")
85
- yield ""
86
-
87
- demo = gr.ChatInterface(call_generate_text,type="messages")
88
-
89
  if __name__ == "__main__":
90
- demo.launch(share=True)
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("google/gemma-2-2b")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  @spaces.GPU(duration=60)
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+ response = ""
28
+
29
+ # Load model directly
30
+
31
+ for message in client.chat_completion(
32
+ messages,
33
+ max_tokens=max_tokens,
34
+ stream=True,
35
+ temperature=temperature,
36
+ top_p=top_p,
37
+ ):
38
+ token = message.choices[0].delta.content
39
+
40
+ response += token
41
+ yield response
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  if __name__ == "__main__":
64
+ demo.launch()
65
+
66
+