Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,90 +1,66 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import os
|
| 3 |
-
import torch
|
| 4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 5 |
-
from transformers import TextStreamer
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 13 |
-
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
-
device = "cuda"
|
| 15 |
-
dtype = torch.bfloat16
|
| 16 |
-
|
| 17 |
-
if not huggingface_token:
|
| 18 |
-
pass
|
| 19 |
-
print("no HUGGINGFACE_TOKEN if you need set secret ")
|
| 20 |
-
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
|
| 30 |
-
|
| 31 |
-
print(model_id,device,dtype)
|
| 32 |
-
histories = []
|
| 33 |
-
#model = None
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
if not is_hugging_face:
|
| 38 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
-
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
| 40 |
-
)
|
| 41 |
-
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device,stream=True ) #pipeline has not to(device)
|
| 42 |
-
|
| 43 |
-
if next(model.parameters()).is_cuda:
|
| 44 |
-
print("The model is on a GPU")
|
| 45 |
-
else:
|
| 46 |
-
print("The model is on a CPU")
|
| 47 |
-
|
| 48 |
-
#print(f"text_generator.device='{text_generator.device}")
|
| 49 |
-
if str(text_generator.device).strip() == 'cuda':
|
| 50 |
-
print("The pipeline is using a GPU")
|
| 51 |
-
else:
|
| 52 |
-
print("The pipeline is using a CPU")
|
| 53 |
-
|
| 54 |
-
print("initialized")
|
| 55 |
|
| 56 |
@spaces.GPU(duration=60)
|
| 57 |
-
def
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
for
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
-
def call_generate_text(message, history):
|
| 74 |
-
# history.append({"role": "user", "content": message})
|
| 75 |
-
print(message)
|
| 76 |
-
print(history)
|
| 77 |
-
|
| 78 |
-
messages = history+[{"role":"user","content":message}]
|
| 79 |
-
try:
|
| 80 |
-
|
| 81 |
-
for text in generate_text(messages):
|
| 82 |
-
yield text
|
| 83 |
-
except RuntimeError as e:
|
| 84 |
-
print(f"An unexpected error occurred: {e}")
|
| 85 |
-
yield ""
|
| 86 |
-
|
| 87 |
-
demo = gr.ChatInterface(call_generate_text,type="messages")
|
| 88 |
-
|
| 89 |
if __name__ == "__main__":
|
| 90 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
+
"""
|
| 5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
+
"""
|
| 7 |
+
client = InferenceClient("google/gemma-2-2b")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
@spaces.GPU(duration=60)
|
| 10 |
+
def respond(
|
| 11 |
+
message,
|
| 12 |
+
history: list[tuple[str, str]],
|
| 13 |
+
system_message,
|
| 14 |
+
max_tokens,
|
| 15 |
+
temperature,
|
| 16 |
+
top_p,
|
| 17 |
+
):
|
| 18 |
+
messages = [{"role": "system", "content": system_message}]
|
| 19 |
+
|
| 20 |
+
for val in history:
|
| 21 |
+
if val[0]:
|
| 22 |
+
messages.append({"role": "user", "content": val[0]})
|
| 23 |
+
if val[1]:
|
| 24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
+
|
| 26 |
+
messages.append({"role": "user", "content": message})
|
| 27 |
+
response = ""
|
| 28 |
+
|
| 29 |
+
# Load model directly
|
| 30 |
+
|
| 31 |
+
for message in client.chat_completion(
|
| 32 |
+
messages,
|
| 33 |
+
max_tokens=max_tokens,
|
| 34 |
+
stream=True,
|
| 35 |
+
temperature=temperature,
|
| 36 |
+
top_p=top_p,
|
| 37 |
+
):
|
| 38 |
+
token = message.choices[0].delta.content
|
| 39 |
+
|
| 40 |
+
response += token
|
| 41 |
+
yield response
|
| 42 |
+
|
| 43 |
+
"""
|
| 44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
+
"""
|
| 46 |
+
demo = gr.ChatInterface(
|
| 47 |
+
respond,
|
| 48 |
+
additional_inputs=[
|
| 49 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
+
gr.Slider(
|
| 53 |
+
minimum=0.1,
|
| 54 |
+
maximum=1.0,
|
| 55 |
+
value=0.95,
|
| 56 |
+
step=0.05,
|
| 57 |
+
label="Top-p (nucleus sampling)",
|
| 58 |
+
),
|
| 59 |
+
],
|
| 60 |
+
)
|
| 61 |
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
if __name__ == "__main__":
|
| 64 |
+
demo.launch()
|
| 65 |
+
|
| 66 |
+
|