Akjava commited on
Commit
611f7d6
Β·
1 Parent(s): 1f956b3

update steram

Browse files
Files changed (1) hide show
  1. app.py +96 -70
app.py CHANGED
@@ -1,74 +1,100 @@
1
- import gradio as gr
2
- import os
3
  import spaces
4
- from huggingface_hub import InferenceClient
5
-
6
- """
7
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
8
- """
9
- token = os.getenv("HUGGINGFACE_TOKEN")
10
- if token =="":
11
- raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
12
- print(token)
13
-
14
- client = InferenceClient("google/gemma-2-2b-it",token = token)
15
-
16
- @spaces.GPU(duration=30)
17
- def respond(
18
- message,
19
- history: list[tuple[str, str]],
20
- system_message,
21
- max_tokens,
22
- temperature,
23
- top_p,
24
- ):
25
- #messages = [{"role": "system", "content": system_message}] #system not supported
26
- messages = []
27
-
28
- for val in history:
29
- if val[0]:
30
- messages.append({"role": "user", "content": val[0]})
31
- if val[1]:
32
- messages.append({"role": "assistant", "content": val[1]})
33
-
34
- messages.append({"role": "user", "content": message})
35
- response = ""
36
-
37
- # Load model directly
38
-
39
- for message in client.chat_completion(
40
- messages,
41
- max_tokens=max_tokens,
42
- stream=True,
43
- temperature=temperature,
44
- top_p=top_p,
45
- ):
46
- token = message.choices[0].delta.content
47
-
48
- response += token
49
- yield response
50
-
51
- """
52
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
53
- """
54
- demo = gr.ChatInterface(
55
- respond,
56
- additional_inputs=[
57
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
58
- gr.Slider(minimum=1, maximum=512, value=32, step=1, label="Max new tokens"),
59
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
60
- gr.Slider(
61
- minimum=0.1,
62
- maximum=1.0,
63
- value=0.95,
64
- step=0.05,
65
- label="Top-p (nucleus sampling)",
66
- ),
67
- ],
68
- )
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
- if __name__ == "__main__":
72
- demo.launch()
73
 
74
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import spaces
2
+ import os
3
+ import torch
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
5
+ from transformers import TextIteratorStreamer
6
+ from threading import Thread
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ import gradio as gr
9
+
10
+ text_generator = None
11
+ is_hugging_face = True
12
+ model_id = "google/gemma-2-9b-it"# too big
13
+ model_id = "google/gemma-2-2b-it"
14
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
15
+ device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
+ device = "cuda"
17
+ dtype = torch.bfloat16
18
+ dtype = torch.float16
19
+
20
+ if not huggingface_token:
21
+ pass
22
+ print("no HUGGINGFACE_TOKEN if you need set secret ")
23
+ #raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
24
+
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
+ tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
33
+
34
+ print(model_id,device,dtype)
35
+ histories = []
36
+ #model = None
37
 
 
 
38
 
39
+
40
+ if not is_hugging_face:
41
+ model = AutoModelForCausalLM.from_pretrained(
42
+ model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
43
+ )
44
+ text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device,stream=True ) #pipeline has not to(device)
45
+
46
+ if next(model.parameters()).is_cuda:
47
+ print("The model is on a GPU")
48
+ else:
49
+ print("The model is on a CPU")
50
+
51
+ #print(f"text_generator.device='{text_generator.device}")
52
+ if str(text_generator.device).strip() == 'cuda':
53
+ print("The pipeline is using a GPU")
54
+ else:
55
+ print("The pipeline is using a CPU")
56
+
57
+ print("initialized")
58
+
59
+ @spaces.GPU(duration=60)
60
+ def generate_text(messages):
61
+ if is_hugging_face:#need everytime initialize for ZeroGPU
62
+ model = AutoModelForCausalLM.from_pretrained(
63
+ model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
64
+ )
65
+ model.to(device)
66
+ question = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
67
+ question = tokenizer(question, return_tensors="pt").to(device)
68
+
69
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
70
+ generation_kwargs = dict(question, streamer=streamer, max_new_tokens=200)
71
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
72
+
73
+ generated_output = ""
74
+ thread.start()
75
+ for new_text in streamer:
76
+ generated_output += new_text
77
+ yield generated_output
78
+
79
+
80
+
81
+
82
+
83
+ def call_generate_text(message, history):
84
+ # history.append({"role": "user", "content": message})
85
+ #print(message)
86
+ #print(history)
87
+
88
+ messages = history+[{"role":"user","content":message}]
89
+ try:
90
+
91
+ for text in generate_text(messages):
92
+ yield text
93
+ except RuntimeError as e:
94
+ print(f"An unexpected error occurred: {e}")
95
+ yield ""
96
+
97
+ demo = gr.ChatInterface(call_generate_text,type="messages")
98
+
99
+ if __name__ == "__main__":
100
+ demo.launch(share=True)