File size: 11,755 Bytes
afafd87 b943661 26a8369 1dc4926 eefa060 26a8369 a3b534b 26a8369 29d67eb 26a8369 fbeaa20 26a8369 fbeaa20 96ba5d0 fbeaa20 f765c86 fbeaa20 0851363 fbeaa20 0851363 fbeaa20 26a8369 0851363 fbeaa20 0851363 fbeaa20 26a8369 c3b8348 26a8369 29d67eb 26a8369 9cbac54 29d67eb 26a8369 29d67eb 0851363 26a8369 ad44bc4 29d67eb 26a8369 c3b8348 a05ab4b dfe2bf3 5d6dbe9 29d67eb 5d6dbe9 dfe2bf3 29d67eb a05ab4b 29d67eb 96ba5d0 29d67eb ad44bc4 29d67eb 96ba5d0 29d67eb 5e212b5 0851363 29d67eb 5e212b5 29d67eb 7ac5166 29d67eb a05ab4b 29d67eb 0851363 29d67eb a05ab4b 26a8369 dfe2bf3 26a8369 0851363 96ba5d0 9cbac54 ad44bc4 9cbac54 26a8369 ad44bc4 26a8369 ad44bc4 96ba5d0 ad44bc4 96ba5d0 ad44bc4 b3716da ad44bc4 26a8369 5d6dbe9 26a8369 29d67eb 26a8369 29d67eb 26a8369 29d67eb 26a8369 c3b8348 9cbac54 c3b8348 9df3361 c3b8348 26a8369 ad44bc4 26a8369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.retrievers import BM25Retriever
import re
# Importing required libraries
import warnings
warnings.filterwarnings("ignore")
import datasets
import os
import json
import subprocess
import sys
import joblib
from llama_cpp import Llama
import gradio as gr
from huggingface_hub import hf_hub_download
from typing import List, Tuple,Dict,Optional
from logger import logging
from exception import CustomExceptionHandling
cache_file = "docs_processed.joblib"
if os.path.exists(cache_file):
docs_processed = joblib.load(cache_file)
#print("Loaded docs_processed from cache.")
else:
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
source_docs = [
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
]
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=50,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
docs_processed = text_splitter.split_documents(source_docs)
joblib.dump(docs_processed, cache_file)
print("Created and saved docs_processed to cache.")
class RetrieverTool():
name = "retriever"
description = "Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query."
inputs = {
"query": {
"type": "string",
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
}
}
output_type = "string"
def __init__(self, docs, **kwargs):
#super().__init__(**kwargs)
self.retriever = BM25Retriever.from_documents(
docs,
k=7,
)
def __call__(self, query: str) -> str:
assert isinstance(query, str), "Your search query must be a string"
docs = self.retriever.invoke(
query,
)
return "\nRetrieved documents:\n" + "".join(
[
f"\n\n===== Document {str(i)} =====\n" + str(doc.page_content)
for i, doc in enumerate(docs)
]
)
retriever_tool = RetrieverTool(docs_processed)
# Download gguf model files
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
hf_hub_download(
repo_id="mradermacher/Qwen2.5-0.5B-Rag-Thinking-i1-GGUF",
filename="Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf",
local_dir="./models",
)
t5_size="base"
hf_hub_download(
repo_id=f"Felladrin/gguf-flan-t5-{t5_size}",
filename=f"flan-t5-{t5_size}.Q8_0.gguf",
local_dir="./models",
)
query_system = """
You are a query rewriter. Your task is to convert a user's question into a concise search query suitable for information retrieval.
The goal is to identify the most important keywords for a search engine.
Here are some examples:
User Question: What is transformer?
Search Query: transformer
User Question: How does a transformer model work in natural language processing?
Search Query: transformer model natural language processing
User Question: What are the advantages of using transformers over recurrent neural networks?
Search Query: transformer vs recurrent neural network advantages
User Question: Explain the attention mechanism in transformers.
Search Query: transformer attention mechanism
User Question: What are the different types of transformer architectures?
Search Query: transformer architectures
User Question: What is the history of the transformer model?
Search Query: transformer model history
"""
# remove strange char like *,/
def clean_text(text):
cleaned = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII chars
cleaned = re.sub(r'[^a-zA-Z0-9_\- ]', '', cleaned) #Then your original rule
cleaned = cleaned.replace("---","")
return cleaned
def generate_t5(llama,message):#text size must be smaller than ctx(default=512)
if llama == None:
raise ValueError("llama not initialized")
try:
tokens = llama.tokenize(f"{message}".encode("utf-8"))
#print(f"text length={len(tokens)}")
llama.encode(tokens)
tokens = [llama.decoder_start_token()]
outputs =""
iteration = 1
temperature = 0.5
top_k = 40
top_p = 0.95
repeat_penalty = 1.2
for i in range(iteration):
for token in llama.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repeat_penalty):
outputs+= llama.detokenize([token]).decode()
if token == llama.token_eos():
break
return outputs
except Exception as e:
raise CustomExceptionHandling(e, sys) from e
return None
llama = None
def to_query(question):
system = """
You are a query rewriter. Your task is to convert a user's question into a concise search query suitable for information retrieval.
The goal is to identify the most important keywords for a search engine.
Here are some examples:
User Question: What is transformer?
Search Query: transformer
User Question: How does a transformer model work in natural language processing?
Search Query: transformer model natural language processing
User Question: What are the advantages of using transformers over recurrent neural networks?
Search Query: transformer vs recurrent neural network advantages
User Question: Explain the attention mechanism in transformers.
Search Query: transformer attention mechanism
User Question: What are the different types of transformer architectures?
Search Query: transformer architectures
User Question: What is the history of the transformer model?
Search Query: transformer model history
---
Now, rewrite the following question:
User Question: %s
Search Query:
"""% question
message = system
try:
global llama
if llama == None:
model_id = f"flan-t5-{t5_size}.Q8_0.gguf"
llama = Llama(f"models/{model_id}",flash_attn=False,verbose=False,
n_gpu_layers=0,
n_threads=2,
n_threads_batch=2
)
query = generate_t5(llama,message)
return clean_text(query)
except Exception as e:
# Custom exception handling
raise CustomExceptionHandling(e, sys) from e
return None
qwen_prompt = """<|im_start|>system
You answer questions from the user, always using the context provided as a basis.
Write down your reasoning for answering the question, between the <think> and </think> tags.<|im_end|>
<|im_start|>user
Context:
%s
Question:
%s<|im_end|>
<|im_start|>assistant
<think>"""
def answer(document:str,question:str,model:str="Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf")->str:
global llm
global llm_model
global provider
llm = Llama(
model_path=f"models/{model}",
flash_attn=False,
n_gpu_layers=0,
n_batch=1024,
n_ctx=2048*4,
n_threads=2,
n_threads_batch=2,
verbose=False
)
llm_model = model
def respond(
message: str,
history: List[Tuple[str, str]],
model: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repeat_penalty: float,
):
"""
Respond to a message using the Gemma3 model via Llama.cpp.
Args:
- message (str): The message to respond to.
- history (List[Tuple[str, str]]): The chat history.
- model (str): The model to use.
- system_message (str): The system message to use.
- max_tokens (int): The maximum number of tokens to generate.
- temperature (float): The temperature of the model.
- top_p (float): The top-p of the model.
- top_k (int): The top-k of the model.
- repeat_penalty (float): The repetition penalty of the model.
Returns:
str: The response to the message.
"""
if model is None:#
return
query = to_query(message)
document = retriever_tool(query=query)
#print(document)
answer(document,message)
response = ""
#do direct in here
for chunk in llm(system_message%(document,message),max_tokens=max_tokens,stream=True,top_k=top_k, top_p=top_p, temperature=temperature, repeat_penalty=repeat_penalty):
text = chunk['choices'][0]['text']
response += text
yield response
# Create a chat interface
# Set the title and description
title = "llama.cpp Qwen2.5-0.5B-Rag-Thinking-Flan-T5"
description = """
- I use forked [llama-cpp-python](https://github.com/fairydreaming/llama-cpp-python/tree/t5) which support T5 on server and it's doesn't support new models(like gemma3)
- Search query generation(query reformulation) Tasks - I use flan-t5-base (large make better result,but too large for just this task)
- Qwen2.5-0.5B as good as small-size.
- anyway google T5 series on CPU is amazing
## Huggingface Free CPU Limitations
- When duplicating a space, the build process can occasionally become stuck, requiring a manual restart to finish.
- Spaces may unexpectedly stop functioning or even be deleted, leading to the need to rework them. Refer to [issue](https://github.com/huggingface/hub-docs/issues/1633) for more information.
"""
demo = gr.ChatInterface(
respond,
examples=[["What is the Diffuser?"], ["Tell me About Huggingface."], ["How to upload dataset?"]],
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Dropdown(
choices=[
"Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf",
],
value="Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf",
label="Model",
info="Select the AI model to use for chat",visible=False
),
gr.Textbox(
value=qwen_prompt,
label="System Prompt",
info="Define the AI assistant's personality and behavior",
lines=2,visible=True
),
gr.Slider(
minimum=1024,
maximum=8192,
value=2048,
step=1,
label="Max Tokens",
info="Maximum length of response (higher = longer replies)",
),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Creativity level (higher = more creative, lower = more focused)",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold",
),
gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top-k",
info="Limit vocabulary choices to top K tokens",
),
gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
info="Penalize repeated words (higher = less repetition)",
),
],
theme="Ocean",
submit_btn="Send",
stop_btn="Stop",
title=title,
description=description,
chatbot=gr.Chatbot(scale=1, show_copy_button=True),
flagging_mode="never",
)
# Launch the chat interface
if __name__ == "__main__":
demo.launch(debug=False)
|