File size: 11,755 Bytes
afafd87
 
 
b943661
26a8369
 
 
1dc4926
eefa060
26a8369
 
 
a3b534b
26a8369
29d67eb
26a8369
 
fbeaa20
26a8369
 
 
fbeaa20
 
 
96ba5d0
fbeaa20
 
 
 
 
 
 
f765c86
 
fbeaa20
 
 
 
 
 
 
 
0851363
fbeaa20
 
 
 
 
 
 
 
 
 
 
0851363
fbeaa20
 
 
 
 
26a8369
0851363
fbeaa20
 
 
 
 
 
 
 
 
 
 
 
0851363
 
fbeaa20
26a8369
c3b8348
26a8369
 
29d67eb
 
26a8369
 
9cbac54
29d67eb
26a8369
29d67eb
0851363
26a8369
 
 
ad44bc4
29d67eb
26a8369
 
c3b8348
a05ab4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe2bf3
 
5d6dbe9
 
 
29d67eb
5d6dbe9
dfe2bf3
29d67eb
 
 
a05ab4b
29d67eb
96ba5d0
29d67eb
 
 
 
 
ad44bc4
29d67eb
 
 
 
 
96ba5d0
29d67eb
 
 
 
 
 
 
 
 
 
5e212b5
0851363
29d67eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e212b5
 
 
29d67eb
 
 
 
 
 
7ac5166
29d67eb
 
 
 
 
 
a05ab4b
 
 
29d67eb
 
 
0851363
 
 
 
 
 
 
 
 
 
 
29d67eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05ab4b
26a8369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe2bf3
 
26a8369
0851363
 
96ba5d0
9cbac54
 
 
ad44bc4
9cbac54
 
 
26a8369
ad44bc4
26a8369
ad44bc4
96ba5d0
ad44bc4
96ba5d0
ad44bc4
 
 
b3716da
ad44bc4
 
 
 
26a8369
 
5d6dbe9
26a8369
 
 
 
 
 
29d67eb
 
26a8369
29d67eb
26a8369
29d67eb
26a8369
c3b8348
9cbac54
c3b8348
 
9df3361
c3b8348
26a8369
ad44bc4
 
 
26a8369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.retrievers import BM25Retriever
import re
# Importing required libraries
import warnings
warnings.filterwarnings("ignore")
import datasets
import os
import json
import subprocess
import sys
import joblib
from llama_cpp import Llama

import gradio as gr
from huggingface_hub import hf_hub_download
from typing import List, Tuple,Dict,Optional
from logger import logging
from exception import CustomExceptionHandling

cache_file = "docs_processed.joblib"
if os.path.exists(cache_file):
    docs_processed = joblib.load(cache_file)
    #print("Loaded docs_processed from cache.")
else:
    knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
    source_docs = [
        Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
    ]

    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=50,
        add_start_index=True,
        strip_whitespace=True,
        separators=["\n\n", "\n", ".", " ", ""],
    )
    docs_processed = text_splitter.split_documents(source_docs)
    joblib.dump(docs_processed, cache_file)
    print("Created and saved docs_processed to cache.")

class RetrieverTool():
    name = "retriever"
    description = "Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query."
    inputs = {
        "query": {
            "type": "string",
            "description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
        }
    }
    output_type = "string"

    def __init__(self, docs, **kwargs):
        #super().__init__(**kwargs)

        self.retriever = BM25Retriever.from_documents(
            docs,
            k=7,  
        )

    def __call__(self, query: str) -> str:
        assert isinstance(query, str), "Your search query must be a string"

        docs = self.retriever.invoke(
            query,
        )
        return "\nRetrieved documents:\n" + "".join(
            [
                f"\n\n===== Document {str(i)} =====\n" + str(doc.page_content)
                for i, doc in enumerate(docs)
            ]
        )



retriever_tool = RetrieverTool(docs_processed)
# Download gguf model files
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

hf_hub_download(
    repo_id="mradermacher/Qwen2.5-0.5B-Rag-Thinking-i1-GGUF",
    filename="Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf",
    local_dir="./models",
)

t5_size="base"
hf_hub_download(
    repo_id=f"Felladrin/gguf-flan-t5-{t5_size}",
    filename=f"flan-t5-{t5_size}.Q8_0.gguf",
    local_dir="./models",
)







query_system = """
You are a query rewriter. Your task is to convert a user's question into a concise search query suitable for information retrieval.
The goal is to identify the most important keywords for a search engine.

Here are some examples:

User Question: What is transformer?
Search Query: transformer

User Question: How does a transformer model work in natural language processing?
Search Query: transformer model natural language processing

User Question: What are the advantages of using transformers over recurrent neural networks?
Search Query: transformer vs recurrent neural network advantages

User Question: Explain the attention mechanism in transformers.
Search Query: transformer attention mechanism

User Question: What are the different types of transformer architectures?
Search Query: transformer architectures

User Question: What is the history of the transformer model?
Search Query: transformer model history
"""

# remove strange char like *,/
def clean_text(text):
    cleaned = re.sub(r'[^\x00-\x7F]+', '', text)  # Remove non-ASCII chars
    cleaned = re.sub(r'[^a-zA-Z0-9_\- ]', '', cleaned) #Then your original rule
    cleaned = cleaned.replace("---","")
    return cleaned
    
def generate_t5(llama,message):#text size must be smaller than ctx(default=512)
    if llama == None:
        raise ValueError("llama not initialized")
    try:
        tokens = llama.tokenize(f"{message}".encode("utf-8"))
        #print(f"text length={len(tokens)}")
        llama.encode(tokens)
        tokens = [llama.decoder_start_token()]
        
        
        outputs =""
        
        iteration = 1
        temperature = 0.5
        top_k = 40
        top_p = 0.95
        repeat_penalty = 1.2
        
        for i in range(iteration):
            for token in llama.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repeat_penalty):
                outputs+= llama.detokenize([token]).decode()
                if token == llama.token_eos():
                    break
        return outputs
    except Exception as e:
        raise CustomExceptionHandling(e, sys) from e
    return None


llama = None
def to_query(question):
    system = """
You are a query rewriter. Your task is to convert a user's question into a concise search query suitable for information retrieval.
The goal is to identify the most important keywords for a search engine.

Here are some examples:
User Question: What is transformer?
Search Query: transformer
User Question: How does a transformer model work in natural language processing?
Search Query: transformer model natural language processing
User Question: What are the advantages of using transformers over recurrent neural networks?
Search Query: transformer vs recurrent neural network advantages
User Question: Explain the attention mechanism in transformers.
Search Query: transformer attention mechanism
User Question: What are the different types of transformer architectures?
Search Query: transformer architectures
User Question: What is the history of the transformer model?
Search Query: transformer model history
---
Now, rewrite the following question:
User Question: %s
Search Query:
"""% question
    message = system
    try:
        global llama
        if llama == None:
            model_id = f"flan-t5-{t5_size}.Q8_0.gguf"
            llama = Llama(f"models/{model_id}",flash_attn=False,verbose=False,
                        n_gpu_layers=0,
                        n_threads=2,
                        n_threads_batch=2
                        )
        query = generate_t5(llama,message)
        return clean_text(query)
    except Exception as e:
        # Custom exception handling
        raise CustomExceptionHandling(e, sys) from e
    return None


qwen_prompt = """<|im_start|>system
You answer questions from the user, always using the context provided as a basis.
Write down your reasoning for answering the question, between the <think> and </think> tags.<|im_end|>
<|im_start|>user
Context:
%s
Question:
%s<|im_end|>
<|im_start|>assistant
<think>"""

def answer(document:str,question:str,model:str="Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf")->str:
    global llm
    global llm_model
    global provider
    llm = Llama(
                model_path=f"models/{model}",
                flash_attn=False,
                n_gpu_layers=0,
                n_batch=1024,
                n_ctx=2048*4,
                n_threads=2,
                n_threads_batch=2,
                verbose=False
            )
    llm_model = model

def respond(
    message: str,
    history: List[Tuple[str, str]],
    model: str,
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
    repeat_penalty: float,
):
    """
    Respond to a message using the Gemma3 model via Llama.cpp.
    Args:
        - message (str): The message to respond to.
        - history (List[Tuple[str, str]]): The chat history.
        - model (str): The model to use.
        - system_message (str): The system message to use.
        - max_tokens (int): The maximum number of tokens to generate.
        - temperature (float): The temperature of the model.
        - top_p (float): The top-p of the model.
        - top_k (int): The top-k of the model.
        - repeat_penalty (float): The repetition penalty of the model.
    Returns:
        str: The response to the message.
    """
    if model is None:#
        return

    query =  to_query(message)
    document = retriever_tool(query=query)
    #print(document)
    answer(document,message)
    response = ""
    #do direct in here
    for chunk in  llm(system_message%(document,message),max_tokens=max_tokens,stream=True,top_k=top_k, top_p=top_p, temperature=temperature, repeat_penalty=repeat_penalty):
        text = chunk['choices'][0]['text']
        response += text
        yield response


# Create a chat interface
# Set the title and description
title = "llama.cpp Qwen2.5-0.5B-Rag-Thinking-Flan-T5"
description = """
- I use forked [llama-cpp-python](https://github.com/fairydreaming/llama-cpp-python/tree/t5) which support T5 on server and it's doesn't support new models(like gemma3)
- Search query generation(query reformulation) Tasks - I use flan-t5-base (large make better result,but too large for just this task)
- Qwen2.5-0.5B as good as small-size.
- anyway google T5 series on CPU is amazing
## Huggingface Free CPU Limitations
- When duplicating a space, the build process can occasionally become stuck, requiring a manual restart to finish.
- Spaces may unexpectedly stop functioning or even be deleted, leading to the need to rework them. Refer to [issue](https://github.com/huggingface/hub-docs/issues/1633) for more information.
"""

demo = gr.ChatInterface(
    respond,
    examples=[["What is the Diffuser?"], ["Tell me About Huggingface."], ["How to upload dataset?"]],
    additional_inputs_accordion=gr.Accordion(
        label="⚙️ Parameters", open=False, render=False
    ),
    additional_inputs=[
        gr.Dropdown(
            choices=[
                
                "Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf",
            ],
            value="Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf",
            label="Model",
            info="Select the AI model to use for chat",visible=False
        ),
        gr.Textbox(
            value=qwen_prompt,
            label="System Prompt",
            info="Define the AI assistant's personality and behavior",
            lines=2,visible=True
        ),
        gr.Slider(
            minimum=1024,
            maximum=8192,
            value=2048,
            step=1,
            label="Max Tokens",
            info="Maximum length of response (higher = longer replies)",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=2.0,
            value=0.7,
            step=0.1,
            label="Temperature",
            info="Creativity level (higher = more creative, lower = more focused)",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
            info="Nucleus sampling threshold",
        ),
        gr.Slider(
            minimum=1,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
            info="Limit vocabulary choices to top K tokens",
        ),
        gr.Slider(
            minimum=1.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition Penalty",
            info="Penalize repeated words (higher = less repetition)",
        ),
    ],
    theme="Ocean",
    submit_btn="Send",
    stop_btn="Stop",
    title=title,
    description=description,
    chatbot=gr.Chatbot(scale=1, show_copy_button=True),
    flagging_mode="never",
)


# Launch the chat interface
if __name__ == "__main__":
    demo.launch(debug=False)