Update app.py
Browse files
app.py
CHANGED
@@ -14,11 +14,75 @@ from llama_cpp_agent.chat_history import BasicChatHistory
|
|
14 |
from llama_cpp_agent.chat_history.messages import Roles
|
15 |
import gradio as gr
|
16 |
from huggingface_hub import hf_hub_download
|
17 |
-
from typing import List, Tuple
|
18 |
from logger import logging
|
19 |
from exception import CustomExceptionHandling
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Download gguf model files
|
23 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
24 |
|
@@ -88,10 +152,21 @@ def respond(
|
|
88 |
llm_model = model
|
89 |
provider = LlamaCppPythonProvider(llm)
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# Create the agent
|
92 |
agent = LlamaCppAgent(
|
93 |
provider,
|
94 |
-
system_prompt=f"{
|
95 |
predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2,
|
96 |
debug_output=True,
|
97 |
)
|
@@ -116,7 +191,7 @@ def respond(
|
|
116 |
|
117 |
# Get the response stream
|
118 |
stream = agent.get_chat_response(
|
119 |
-
|
120 |
llm_sampling_settings=settings,
|
121 |
chat_history=messages,
|
122 |
returns_streaming_generator=True,
|
@@ -141,7 +216,7 @@ def respond(
|
|
141 |
# Create a chat interface
|
142 |
demo = gr.ChatInterface(
|
143 |
respond,
|
144 |
-
examples=[["What is the
|
145 |
additional_inputs_accordion=gr.Accordion(
|
146 |
label="⚙️ Parameters", open=False, render=False
|
147 |
),
|
|
|
14 |
from llama_cpp_agent.chat_history.messages import Roles
|
15 |
import gradio as gr
|
16 |
from huggingface_hub import hf_hub_download
|
17 |
+
from typing import List, Tuple,Dict,Optional
|
18 |
from logger import logging
|
19 |
from exception import CustomExceptionHandling
|
20 |
|
21 |
+
from smolagents.gradio_ui import GradioUI
|
22 |
+
from smolagents import (
|
23 |
+
CodeAgent,
|
24 |
+
GoogleSearchTool,
|
25 |
+
Model,
|
26 |
+
Tool,
|
27 |
+
LiteLLMModel,
|
28 |
+
ToolCallingAgent,
|
29 |
+
ChatMessage,tool,MessageRole
|
30 |
+
)
|
31 |
+
|
32 |
+
cache_file = "docs_processed.joblib"
|
33 |
+
if os.path.exists(cache_file):
|
34 |
+
docs_processed = joblib.load(cache_file)
|
35 |
+
print("Loaded docs_processed from cache.")
|
36 |
+
else:
|
37 |
+
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
|
38 |
+
source_docs = [
|
39 |
+
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base
|
40 |
+
]
|
41 |
+
|
42 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
43 |
+
chunk_size=400,
|
44 |
+
chunk_overlap=20,
|
45 |
+
add_start_index=True,
|
46 |
+
strip_whitespace=True,
|
47 |
+
separators=["\n\n", "\n", ".", " ", ""],
|
48 |
+
)
|
49 |
+
docs_processed = text_splitter.split_documents(source_docs)
|
50 |
+
joblib.dump(docs_processed, cache_file)
|
51 |
+
print("Created and saved docs_processed to cache.")
|
52 |
+
|
53 |
+
class RetrieverTool(Tool):
|
54 |
+
name = "retriever"
|
55 |
+
description = "Uses semantic search to retrieve the parts of documentation that could be most relevant to answer your query."
|
56 |
+
inputs = {
|
57 |
+
"query": {
|
58 |
+
"type": "string",
|
59 |
+
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
|
60 |
+
}
|
61 |
+
}
|
62 |
+
output_type = "string"
|
63 |
+
|
64 |
+
def __init__(self, docs, **kwargs):
|
65 |
+
super().__init__(**kwargs)
|
66 |
+
|
67 |
+
self.retriever = BM25Retriever.from_documents(
|
68 |
+
docs,
|
69 |
+
k=7,
|
70 |
+
)
|
71 |
+
|
72 |
+
def forward(self, query: str) -> str:
|
73 |
+
assert isinstance(query, str), "Your search query must be a string"
|
74 |
|
75 |
+
docs = self.retriever.invoke(
|
76 |
+
query,
|
77 |
+
)
|
78 |
+
return "\nRetrieved documents:\n" + "".join(
|
79 |
+
[
|
80 |
+
f"\n\n===== Document {str(i)} =====\n" + str(doc.page_content)
|
81 |
+
for i, doc in enumerate(docs)
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
retriever_tool = RetrieverTool(docs_processed)
|
86 |
# Download gguf model files
|
87 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
88 |
|
|
|
152 |
llm_model = model
|
153 |
provider = LlamaCppPythonProvider(llm)
|
154 |
|
155 |
+
text = retriever_tool(query=f"{message}")
|
156 |
+
|
157 |
+
retriever_system="""
|
158 |
+
You are an AI assistant that answers questions based on documents provided by the user. Wait for the user to send a document. Once you receive the document, carefully read its contents and then answer the following question:
|
159 |
+
|
160 |
+
Question: $s
|
161 |
+
|
162 |
+
[Wait for user's message containing the document]
|
163 |
+
""" % message
|
164 |
+
|
165 |
+
|
166 |
# Create the agent
|
167 |
agent = LlamaCppAgent(
|
168 |
provider,
|
169 |
+
system_prompt=f"{retriever_system}",
|
170 |
predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2,
|
171 |
debug_output=True,
|
172 |
)
|
|
|
191 |
|
192 |
# Get the response stream
|
193 |
stream = agent.get_chat_response(
|
194 |
+
text,
|
195 |
llm_sampling_settings=settings,
|
196 |
chat_history=messages,
|
197 |
returns_streaming_generator=True,
|
|
|
216 |
# Create a chat interface
|
217 |
demo = gr.ChatInterface(
|
218 |
respond,
|
219 |
+
examples=[["What is the Transform?"], ["Tell me About Huggng."], ["How to upload dataset?"]],
|
220 |
additional_inputs_accordion=gr.Accordion(
|
221 |
label="⚙️ Parameters", open=False, render=False
|
222 |
),
|