Update app.py
Browse files
app.py
CHANGED
@@ -12,28 +12,13 @@ import subprocess
|
|
12 |
import sys
|
13 |
import joblib
|
14 |
from llama_cpp import Llama
|
15 |
-
|
16 |
-
from llama_cpp_agent import MessagesFormatterType
|
17 |
-
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
18 |
-
from llama_cpp_agent.chat_history import BasicChatHistory
|
19 |
-
from llama_cpp_agent.chat_history.messages import Roles
|
20 |
import gradio as gr
|
21 |
from huggingface_hub import hf_hub_download
|
22 |
from typing import List, Tuple,Dict,Optional
|
23 |
from logger import logging
|
24 |
from exception import CustomExceptionHandling
|
25 |
|
26 |
-
from smolagents.gradio_ui import GradioUI
|
27 |
-
from smolagents import (
|
28 |
-
CodeAgent,
|
29 |
-
GoogleSearchTool,
|
30 |
-
Model,
|
31 |
-
Tool,
|
32 |
-
LiteLLMModel,
|
33 |
-
ToolCallingAgent,
|
34 |
-
ChatMessage,tool,MessageRole
|
35 |
-
)
|
36 |
-
|
37 |
cache_file = "docs_processed.joblib"
|
38 |
if os.path.exists(cache_file):
|
39 |
docs_processed = joblib.load(cache_file)
|
@@ -91,24 +76,25 @@ retriever_tool = RetrieverTool(docs_processed)
|
|
91 |
# Download gguf model files
|
92 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
93 |
|
|
|
94 |
hf_hub_download(
|
95 |
-
repo_id="
|
96 |
-
filename="
|
97 |
local_dir="./models",
|
98 |
)
|
|
|
99 |
hf_hub_download(
|
100 |
-
repo_id="
|
101 |
-
filename="
|
102 |
local_dir="./models",
|
103 |
)
|
104 |
|
105 |
# Set the title and description
|
106 |
-
title = "
|
107 |
-
description = """
|
|
|
108 |
|
109 |
|
110 |
-
llm = None
|
111 |
-
llm_model = None
|
112 |
|
113 |
|
114 |
query_system = """
|
@@ -140,38 +126,101 @@ Search Query: transformer model history
|
|
140 |
def clean_text(text):
|
141 |
cleaned = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII chars
|
142 |
cleaned = re.sub(r'[^a-zA-Z0-9_\- ]', '', cleaned) #Then your original rule
|
|
|
143 |
return cleaned
|
144 |
|
145 |
-
def
|
146 |
-
|
|
|
147 |
try:
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
Now, rewrite the following question:
|
157 |
User Question: %s
|
158 |
Search Query:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
return clean_text(
|
172 |
except Exception as e:
|
173 |
# Custom exception handling
|
174 |
raise CustomExceptionHandling(e, sys) from e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
def respond(
|
177 |
message: str,
|
@@ -186,7 +235,6 @@ def respond(
|
|
186 |
):
|
187 |
"""
|
188 |
Respond to a message using the Gemma3 model via Llama.cpp.
|
189 |
-
|
190 |
Args:
|
191 |
- message (str): The message to respond to.
|
192 |
- history (List[Tuple[str, str]]): The chat history.
|
@@ -197,101 +245,13 @@ def respond(
|
|
197 |
- top_p (float): The top-p of the model.
|
198 |
- top_k (int): The top-k of the model.
|
199 |
- repeat_penalty (float): The repetition penalty of the model.
|
200 |
-
|
201 |
Returns:
|
202 |
str: The response to the message.
|
203 |
"""
|
204 |
if model is None:#
|
205 |
return
|
206 |
-
|
207 |
-
try:
|
208 |
-
# Load the global variables
|
209 |
-
global llm
|
210 |
-
global llm_model
|
211 |
-
|
212 |
-
# Load the model
|
213 |
-
if llm is None or llm_model != model:
|
214 |
-
llm = Llama(
|
215 |
-
model_path=f"models/{model}",
|
216 |
-
flash_attn=False,
|
217 |
-
n_gpu_layers=0,
|
218 |
-
n_batch=16,
|
219 |
-
n_ctx=2048,
|
220 |
-
n_threads=2,
|
221 |
-
n_threads_batch=2,
|
222 |
-
verbose=False
|
223 |
-
)
|
224 |
-
llm_model = model
|
225 |
-
provider = LlamaCppPythonProvider(llm)
|
226 |
-
|
227 |
-
query = to_query(provider,message)
|
228 |
-
text = retriever_tool(query=f"{query}")
|
229 |
-
|
230 |
-
|
231 |
-
#very sensitive against prompt
|
232 |
-
retriever_system="""
|
233 |
-
You are an AI assistant that answers questions based on below retrievered documents.
|
234 |
-
|
235 |
-
Documents:
|
236 |
-
---
|
237 |
-
%s
|
238 |
-
---
|
239 |
-
Question: %s
|
240 |
-
Answer:
|
241 |
-
""" % (text,message)
|
242 |
-
|
243 |
-
# Create the agent
|
244 |
-
agent = LlamaCppAgent(
|
245 |
-
provider,
|
246 |
-
#system_prompt=f"{retriever_system}",
|
247 |
-
system_prompt="you are kind assistant",
|
248 |
-
predefined_messages_formatter_type=MessagesFormatterType.GEMMA_2,
|
249 |
-
debug_output=False,
|
250 |
-
)
|
251 |
-
|
252 |
-
# Set the settings like temperature, top-k, top-p, max tokens, etc.
|
253 |
-
settings = provider.get_provider_default_settings()
|
254 |
-
settings.temperature = temperature
|
255 |
-
settings.top_k = top_k
|
256 |
-
settings.top_p = top_p
|
257 |
-
settings.max_tokens = max_tokens
|
258 |
-
settings.repeat_penalty = repeat_penalty
|
259 |
-
settings.stream = True
|
260 |
-
|
261 |
-
messages = BasicChatHistory()
|
262 |
-
|
263 |
-
# Add the chat history
|
264 |
-
for msn in history:
|
265 |
-
user = {"role": Roles.user, "content": msn[0]}
|
266 |
-
assistant = {"role": Roles.assistant, "content": msn[1]}
|
267 |
-
messages.add_message(user)
|
268 |
-
messages.add_message(assistant)
|
269 |
-
|
270 |
-
# Get the response stream
|
271 |
-
stream = agent.get_chat_response(
|
272 |
-
retriever_system,
|
273 |
-
#retriever_system+text,
|
274 |
-
#retriever_system+text,
|
275 |
-
llm_sampling_settings=settings,
|
276 |
-
chat_history=messages,
|
277 |
-
returns_streaming_generator=True,
|
278 |
-
print_output=False,
|
279 |
-
)
|
280 |
-
|
281 |
-
# Log the success
|
282 |
-
logging.info("Response stream generated successfully")
|
283 |
-
|
284 |
-
# Generate the response
|
285 |
-
outputs = ""
|
286 |
-
for output in stream:
|
287 |
-
outputs += output
|
288 |
-
yield outputs
|
289 |
-
|
290 |
-
# Handle exceptions that may occur during the process
|
291 |
-
except Exception as e:
|
292 |
-
# Custom exception handling
|
293 |
-
raise CustomExceptionHandling(e, sys) from e
|
294 |
|
|
|
295 |
|
296 |
# Create a chat interface
|
297 |
demo = gr.ChatInterface(
|
@@ -303,12 +263,12 @@ demo = gr.ChatInterface(
|
|
303 |
additional_inputs=[
|
304 |
gr.Dropdown(
|
305 |
choices=[
|
306 |
-
|
307 |
-
"
|
308 |
],
|
309 |
-
value="
|
310 |
label="Model",
|
311 |
-
info="Select the AI model to use for chat",
|
312 |
),
|
313 |
gr.Textbox(
|
314 |
value="You are a helpful assistant.",
|
|
|
12 |
import sys
|
13 |
import joblib
|
14 |
from llama_cpp import Llama
|
15 |
+
|
|
|
|
|
|
|
|
|
16 |
import gradio as gr
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
from typing import List, Tuple,Dict,Optional
|
19 |
from logger import logging
|
20 |
from exception import CustomExceptionHandling
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
cache_file = "docs_processed.joblib"
|
23 |
if os.path.exists(cache_file):
|
24 |
docs_processed = joblib.load(cache_file)
|
|
|
76 |
# Download gguf model files
|
77 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
78 |
|
79 |
+
|
80 |
hf_hub_download(
|
81 |
+
repo_id="mradermacher/Qwen2.5-0.5B-Rag-Thinking-i1-GGUF",
|
82 |
+
filename="Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf",
|
83 |
local_dir="./models",
|
84 |
)
|
85 |
+
t5_size="base"
|
86 |
hf_hub_download(
|
87 |
+
repo_id=f"Felladrin/gguf-flan-t5-{t5_size}",
|
88 |
+
filename=f"flan-t5-{size}.Q8_0.gguf",
|
89 |
local_dir="./models",
|
90 |
)
|
91 |
|
92 |
# Set the title and description
|
93 |
+
title = "Qwen2.5-0.5B-Rag-Thinking-Flan-T5"
|
94 |
+
description = """My Best CPU Rag Solution"""
|
95 |
+
|
96 |
|
97 |
|
|
|
|
|
98 |
|
99 |
|
100 |
query_system = """
|
|
|
126 |
def clean_text(text):
|
127 |
cleaned = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII chars
|
128 |
cleaned = re.sub(r'[^a-zA-Z0-9_\- ]', '', cleaned) #Then your original rule
|
129 |
+
cleaned = cleaned.replace("---","")
|
130 |
return cleaned
|
131 |
|
132 |
+
def generate_t5(llama,message):#text size must be smaller than ctx(default=512)
|
133 |
+
if llama == None:
|
134 |
+
raise ValueError("llama not initialized")
|
135 |
try:
|
136 |
+
tokens = llama.tokenize(f"{message}".encode("utf-8"))
|
137 |
+
print(f"text length={len(tokens)}")
|
138 |
+
#print(tokens)
|
139 |
+
llama.encode(tokens)
|
140 |
+
tokens = [llama.decoder_start_token()]
|
141 |
+
|
142 |
+
|
143 |
+
outputs =""
|
144 |
+
#TODO support stream
|
145 |
+
iteration = 1
|
146 |
+
temperature = 0.5
|
147 |
+
top_k = 40
|
148 |
+
top_p = 0.95
|
149 |
+
repeat_penalty = 1.2
|
150 |
+
print("stepped")
|
151 |
+
for i in range(iteration):
|
152 |
+
for token in llama.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repeat_penalty):
|
153 |
+
outputs+= llama.detokenize([token]).decode()
|
154 |
+
if token == llama.token_eos():
|
155 |
+
break
|
156 |
+
return outputs
|
157 |
+
except Exception as e:
|
158 |
+
raise CustomExceptionHandling(e, sys) from e
|
159 |
+
return None
|
160 |
+
|
161 |
|
162 |
+
def to_query(question):
|
163 |
+
system = """
|
164 |
+
You are a query rewriter. Your task is to convert a user's question into a concise search query suitable for information retrieval.
|
165 |
+
The goal is to identify the most important keywords for a search engine.
|
166 |
+
|
167 |
+
Here are some examples:
|
168 |
+
User Question: What is transformer?
|
169 |
+
Search Query: transformer
|
170 |
+
User Question: How does a transformer model work in natural language processing?
|
171 |
+
Search Query: transformer model natural language processing
|
172 |
+
User Question: What are the advantages of using transformers over recurrent neural networks?
|
173 |
+
Search Query: transformer vs recurrent neural network advantages
|
174 |
+
User Question: Explain the attention mechanism in transformers.
|
175 |
+
Search Query: transformer attention mechanism
|
176 |
+
User Question: What are the different types of transformer architectures?
|
177 |
+
Search Query: transformer architectures
|
178 |
+
User Question: What is the history of the transformer model?
|
179 |
+
Search Query: transformer model history
|
180 |
+
---
|
181 |
Now, rewrite the following question:
|
182 |
User Question: %s
|
183 |
Search Query:
|
184 |
+
"""% question
|
185 |
+
message = system
|
186 |
+
try:
|
187 |
+
global llama
|
188 |
+
if llama == None:
|
189 |
+
model_id = f"flan-t5-{t5_size}.Q8_0.gguf"
|
190 |
+
llama = Llama(f"models/{model_id}",flash_attn=False,
|
191 |
+
n_gpu_layers=0,
|
192 |
+
n_threads=2,
|
193 |
+
n_threads_batch=2
|
194 |
+
)
|
195 |
+
query = generate_t5(llama,message)
|
196 |
+
return clean_text(query)
|
197 |
except Exception as e:
|
198 |
# Custom exception handling
|
199 |
raise CustomExceptionHandling(e, sys) from e
|
200 |
+
return None
|
201 |
+
|
202 |
+
|
203 |
+
def answer(document:str,question:str,model:str="Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf")->str:
|
204 |
+
global llm
|
205 |
+
global llm_model
|
206 |
+
global provider
|
207 |
+
llm = Llama(
|
208 |
+
model_path=f"models/{model}",
|
209 |
+
flash_attn=False,
|
210 |
+
n_gpu_layers=0,
|
211 |
+
n_batch=1024,
|
212 |
+
n_ctx=2048*4,
|
213 |
+
n_threads=2,
|
214 |
+
n_threads_batch=2,
|
215 |
+
verbose=False
|
216 |
+
)
|
217 |
+
llm_model = model
|
218 |
+
#provider = LlamaCppPythonProvider(llm)
|
219 |
+
|
220 |
+
result = llm(qwen_prompt%(document,question),max_tokens=2048*4)
|
221 |
+
#answer = to_answer(provider,document,question)
|
222 |
+
return result['choices'][0]['text']
|
223 |
+
|
224 |
|
225 |
def respond(
|
226 |
message: str,
|
|
|
235 |
):
|
236 |
"""
|
237 |
Respond to a message using the Gemma3 model via Llama.cpp.
|
|
|
238 |
Args:
|
239 |
- message (str): The message to respond to.
|
240 |
- history (List[Tuple[str, str]]): The chat history.
|
|
|
245 |
- top_p (float): The top-p of the model.
|
246 |
- top_k (int): The top-k of the model.
|
247 |
- repeat_penalty (float): The repetition penalty of the model.
|
|
|
248 |
Returns:
|
249 |
str: The response to the message.
|
250 |
"""
|
251 |
if model is None:#
|
252 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
+
return to_query(message)
|
255 |
|
256 |
# Create a chat interface
|
257 |
demo = gr.ChatInterface(
|
|
|
263 |
additional_inputs=[
|
264 |
gr.Dropdown(
|
265 |
choices=[
|
266 |
+
|
267 |
+
"Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf",
|
268 |
],
|
269 |
+
value="Qwen2.5-0.5B-Rag-Thinking.i1-Q6_K.gguf",
|
270 |
label="Model",
|
271 |
+
info="Select the AI model to use for chat",visible=False
|
272 |
),
|
273 |
gr.Textbox(
|
274 |
value="You are a helpful assistant.",
|