aigen / app /main.py
Ais
Update app/main.py
b8f5365 verified
raw
history blame
1.66 kB
from fastapi import FastAPI, Request
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
app = FastAPI()
# ✅ Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_auth_token=True)
tokenizer.pad_token = tokenizer.eos_token
# ✅ Load base model without quantization (for CPU)
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.2",
torch_dtype=torch.float32,
use_auth_token=True
)
# ✅ Load LoRA adapter
ADAPTER_DIR = "./adapter/version 1"
model = PeftModel.from_pretrained(model, ADAPTER_DIR)
model.eval()
# ✅ Build prompt from messages
def build_prompt(messages):
prompt = ""
for msg in messages:
if msg["role"] == "user":
prompt += f"### User:\n{msg['content']}\n"
elif msg["role"] == "assistant":
prompt += f"### Assistant:\n{msg['content']}\n"
prompt += "### Assistant:\n"
return prompt
# ✅ Input format
class ChatRequest(BaseModel):
messages: list # list of {"role": "user"/"assistant", "content": "..."}
@app.post("/chat")
async def chat(req: ChatRequest):
prompt = build_prompt(req.messages)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.95,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
reply = response.split("### Assistant:")[-1].strip()
return {"response": reply}