Ais
commited on
Update app/main.py
Browse files- app/main.py +7 -15
app/main.py
CHANGED
@@ -1,31 +1,23 @@
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel
|
5 |
import torch
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
# ✅ Load tokenizer
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
11 |
tokenizer.pad_token = tokenizer.eos_token
|
12 |
|
13 |
-
# ✅
|
14 |
-
bnb_config = BitsAndBytesConfig(
|
15 |
-
load_in_4bit=True,
|
16 |
-
bnb_4bit_use_double_quant=True,
|
17 |
-
bnb_4bit_quant_type="nf4",
|
18 |
-
bnb_4bit_compute_dtype=torch.float16
|
19 |
-
)
|
20 |
-
|
21 |
-
# ✅ Load base model
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
24 |
-
|
25 |
-
|
26 |
)
|
27 |
|
28 |
-
# ✅ Load LoRA adapter
|
29 |
ADAPTER_DIR = "./adapter/version 1"
|
30 |
model = PeftModel.from_pretrained(model, ADAPTER_DIR)
|
31 |
model.eval()
|
@@ -59,4 +51,4 @@ async def chat(req: ChatRequest):
|
|
59 |
)
|
60 |
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
61 |
reply = response.split("### Assistant:")[-1].strip()
|
62 |
-
return {"response": reply}
|
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel
|
5 |
import torch
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
# ✅ Load tokenizer
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_auth_token=True)
|
11 |
tokenizer.pad_token = tokenizer.eos_token
|
12 |
|
13 |
+
# ✅ Load base model without quantization (for CPU)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
15 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
16 |
+
torch_dtype=torch.float32,
|
17 |
+
use_auth_token=True
|
18 |
)
|
19 |
|
20 |
+
# ✅ Load LoRA adapter
|
21 |
ADAPTER_DIR = "./adapter/version 1"
|
22 |
model = PeftModel.from_pretrained(model, ADAPTER_DIR)
|
23 |
model.eval()
|
|
|
51 |
)
|
52 |
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
53 |
reply = response.split("### Assistant:")[-1].strip()
|
54 |
+
return {"response": reply}
|