Ais commited on
Commit
b8f5365
·
verified ·
1 Parent(s): 12b3218

Update app/main.py

Browse files
Files changed (1) hide show
  1. app/main.py +7 -15
app/main.py CHANGED
@@ -1,31 +1,23 @@
1
  from fastapi import FastAPI, Request
2
  from pydantic import BaseModel
3
- from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
4
  from peft import PeftModel
5
  import torch
6
 
7
  app = FastAPI()
8
 
9
  # ✅ Load tokenizer
10
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
11
  tokenizer.pad_token = tokenizer.eos_token
12
 
13
- # ✅ Setup quantization config
14
- bnb_config = BitsAndBytesConfig(
15
- load_in_4bit=True,
16
- bnb_4bit_use_double_quant=True,
17
- bnb_4bit_quant_type="nf4",
18
- bnb_4bit_compute_dtype=torch.float16
19
- )
20
-
21
- # ✅ Load base model
22
  model = AutoModelForCausalLM.from_pretrained(
23
  "mistralai/Mistral-7B-Instruct-v0.2",
24
- device_map="auto",
25
- quantization_config=bnb_config
26
  )
27
 
28
- # ✅ Load LoRA adapter (ensure it's downloaded)
29
  ADAPTER_DIR = "./adapter/version 1"
30
  model = PeftModel.from_pretrained(model, ADAPTER_DIR)
31
  model.eval()
@@ -59,4 +51,4 @@ async def chat(req: ChatRequest):
59
  )
60
  response = tokenizer.decode(output[0], skip_special_tokens=True)
61
  reply = response.split("### Assistant:")[-1].strip()
62
- return {"response": reply}
 
1
  from fastapi import FastAPI, Request
2
  from pydantic import BaseModel
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
  from peft import PeftModel
5
  import torch
6
 
7
  app = FastAPI()
8
 
9
  # ✅ Load tokenizer
10
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_auth_token=True)
11
  tokenizer.pad_token = tokenizer.eos_token
12
 
13
+ # ✅ Load base model without quantization (for CPU)
 
 
 
 
 
 
 
 
14
  model = AutoModelForCausalLM.from_pretrained(
15
  "mistralai/Mistral-7B-Instruct-v0.2",
16
+ torch_dtype=torch.float32,
17
+ use_auth_token=True
18
  )
19
 
20
+ # ✅ Load LoRA adapter
21
  ADAPTER_DIR = "./adapter/version 1"
22
  model = PeftModel.from_pretrained(model, ADAPTER_DIR)
23
  model.eval()
 
51
  )
52
  response = tokenizer.decode(output[0], skip_special_tokens=True)
53
  reply = response.split("### Assistant:")[-1].strip()
54
+ return {"response": reply}