File size: 1,664 Bytes
48b2ebf
 
b8f5365
48b2ebf
 
 
 
 
 
b8f5365
48b2ebf
 
b8f5365
48b2ebf
 
b8f5365
 
48b2ebf
 
b8f5365
48b2ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8f5365
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from fastapi import FastAPI, Request
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch

app = FastAPI()

# ✅ Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_auth_token=True)
tokenizer.pad_token = tokenizer.eos_token

# ✅ Load base model without quantization (for CPU)
model = AutoModelForCausalLM.from_pretrained(
    "mistralai/Mistral-7B-Instruct-v0.2",
    torch_dtype=torch.float32,
    use_auth_token=True
)

# ✅ Load LoRA adapter
ADAPTER_DIR = "./adapter/version 1"
model = PeftModel.from_pretrained(model, ADAPTER_DIR)
model.eval()

# ✅ Build prompt from messages
def build_prompt(messages):
    prompt = ""
    for msg in messages:
        if msg["role"] == "user":
            prompt += f"### User:\n{msg['content']}\n"
        elif msg["role"] == "assistant":
            prompt += f"### Assistant:\n{msg['content']}\n"
    prompt += "### Assistant:\n"
    return prompt

# ✅ Input format
class ChatRequest(BaseModel):
    messages: list  # list of {"role": "user"/"assistant", "content": "..."}

@app.post("/chat")
async def chat(req: ChatRequest):
    prompt = build_prompt(req.messages)
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    output = model.generate(
        **inputs,
        max_new_tokens=256,
        do_sample=True,
        temperature=0.7,
        top_p=0.95,
        eos_token_id=tokenizer.eos_token_id,
    )
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    reply = response.split("### Assistant:")[-1].strip()
    return {"response": reply}