File size: 4,396 Bytes
6df15e3
158ce9c
6df15e3
 
 
158ce9c
6df15e3
18aea39
6df15e3
90ddcea
18aea39
4ca2587
158ce9c
 
6df15e3
158ce9c
 
 
 
 
4ca2587
 
6df15e3
4ca2587
6df15e3
 
 
 
 
 
 
 
 
 
4ca2587
6df15e3
 
 
 
158ce9c
 
4ca2587
48b2ebf
4ca2587
158ce9c
4ca2587
6df15e3
 
4ca2587
6df15e3
 
4ca2587
 
 
6df15e3
730d86c
4ca2587
6df15e3
 
 
4ca2587
 
 
 
 
 
730d86c
 
 
 
 
4ca2587
 
 
730d86c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ca2587
 
 
6df15e3
 
 
730d86c
 
6df15e3
 
 
 
 
4ca2587
730d86c
 
4ca2587
730d86c
 
 
 
 
 
6df15e3
4ca2587
6df15e3
4ca2587
6df15e3
 
 
 
 
 
 
4ca2587
6df15e3
 
 
 
4ca2587
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import torch
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from starlette.middleware.cors import CORSMiddleware

# === Setup FastAPI ===
app = FastAPI()

# === CORS (optional for frontend access) ===
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# === Load API Key from Hugging Face Secrets ===
API_KEY = os.getenv("API_KEY", "undefined")  # Add API_KEY in your HF Space Secrets

# === Model Settings ===
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
ADAPTER_PATH = "adapter"

print("🔧 Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)

print("🧠 Loading base model on CPU...")
base_model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL,
    trust_remote_code=True,
    torch_dtype=torch.float32
).cpu()

print("🔗 Applying LoRA adapter...")
model = PeftModel.from_pretrained(base_model, ADAPTER_PATH).cpu()
model.eval()

print("✅ Model and adapter loaded successfully.")

# === Root Route ===
@app.get("/")
def root():
    return {"message": "🧠 Qwen2.5-0.5B-Instruct API is running on CPU!"}

# === Chat Completion API ===
@app.post("/v1/chat/completions")
async def chat(request: Request):
    # ✅ API Key Authorization
    auth_header = request.headers.get("Authorization", "")
    if not auth_header.startswith("Bearer "):
        return JSONResponse(status_code=401, content={"error": "Missing Bearer token in Authorization header."})
    
    token = auth_header.replace("Bearer ", "").strip()
    if token != API_KEY:
        return JSONResponse(status_code=401, content={"error": "Invalid API key."})

    # ✅ Parse Request
    try:
        body = await request.json()
        messages = body.get("messages", [])
        if not messages or not isinstance(messages, list):
            raise ValueError("Invalid or missing 'messages' field.")
        
        # ✅ FIXED: Process full conversation history, not just last message
        temperature = body.get("temperature", 0.7)
        max_tokens = body.get("max_tokens", 512)
        
    except Exception as e:
        return JSONResponse(status_code=400, content={"error": f"Bad request: {str(e)}"})

    # ✅ FIXED: Build full conversation prompt with history
    formatted_prompt = ""
    
    for message in messages:
        role = message.get("role", "")
        content = message.get("content", "")
        
        if role == "system":
            formatted_prompt += f"<|im_start|>system\n{content}<|im_end|>\n"
        elif role == "user":
            formatted_prompt += f"<|im_start|>user\n{content}<|im_end|>\n"
        elif role == "assistant":
            formatted_prompt += f"<|im_start|>assistant\n{content}<|im_end|>\n"
    
    # Add the assistant start token for generation
    formatted_prompt += "<|im_start|>assistant\n"
    
    print(f"🤖 Processing conversation with {len(messages)} messages")
    print(f"📝 Full prompt preview: {formatted_prompt[:200]}...")

    inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cpu")

    # ✅ Generate Response
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )

    decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # ✅ FIXED: Clean extraction of only the new assistant response
    final_answer = decoded.split("<|im_start|>assistant\n")[-1].strip()
    
    # Remove any potential end tokens or artifacts
    if "<|im_end|>" in final_answer:
        final_answer = final_answer.split("<|im_end|>")[0].strip()
    
    print(f"✅ Generated response: {final_answer[:100]}...")

    # ✅ OpenAI-style Response
    return {
        "id": "chatcmpl-local-001",
        "object": "chat.completion",
        "model": "Qwen2.5-0.5B-Instruct-LoRA",
        "choices": [
            {
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": final_answer
                },
                "finish_reason": "stop"
            }
        ]
    }