Ais
commited on
Update app/main.py
Browse files- app/main.py +78 -69
app/main.py
CHANGED
@@ -1,80 +1,89 @@
|
|
1 |
# app/main.py
|
2 |
-
from fastapi import FastAPI, Form
|
3 |
-
from fastapi.responses import HTMLResponse
|
4 |
-
from fastapi.middleware.cors import CORSMiddleware
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
-
from peft import PeftModel
|
7 |
-
import torch
|
8 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
ADAPTER_FOLDER = "adapter"
|
18 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
device_map="auto",
|
25 |
-
token=HF_TOKEN,
|
26 |
-
trust_remote_code=True
|
27 |
-
)
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
CORSMiddleware,
|
42 |
-
allow_origins=["*"], # Allow all origins for testing
|
43 |
-
allow_credentials=True,
|
44 |
-
allow_methods=["*"],
|
45 |
-
allow_headers=["*"],
|
46 |
-
)
|
47 |
-
|
48 |
-
@app.get("/", response_class=HTMLResponse)
|
49 |
-
async def form():
|
50 |
-
return """
|
51 |
-
<html>
|
52 |
-
<head><title>Qwen Chat</title></head>
|
53 |
-
<body>
|
54 |
-
<h2>Ask something:</h2>
|
55 |
-
<form method="post">
|
56 |
-
<textarea name="prompt" rows="4" cols="60"></textarea><br>
|
57 |
-
<input type="submit" value="Generate">
|
58 |
-
</form>
|
59 |
-
</body>
|
60 |
-
</html>
|
61 |
-
"""
|
62 |
-
|
63 |
-
@app.post("/", response_class=HTMLResponse)
|
64 |
-
async def generate(prompt: str = Form(...)):
|
65 |
-
full_prompt = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
66 |
-
output = pipe(full_prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
|
67 |
-
response = output[0]["generated_text"].split("<|im_start|>assistant\n")[-1].strip()
|
68 |
-
|
69 |
-
return f"""
|
70 |
-
<html>
|
71 |
-
<head><title>Qwen Chat</title></head>
|
72 |
-
<body>
|
73 |
-
<h2>Your Prompt:</h2>
|
74 |
-
<p>{prompt}</p>
|
75 |
-
<h2>Response:</h2>
|
76 |
-
<p>{response}</p>
|
77 |
-
<a href="/">Ask again</a>
|
78 |
-
</body>
|
79 |
-
</html>
|
80 |
-
"""
|
|
|
1 |
# app/main.py
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
import torch
|
4 |
+
import gdown
|
5 |
+
import re
|
6 |
+
import shutil
|
7 |
+
from fastapi import FastAPI, Request
|
8 |
+
from pydantic import BaseModel
|
9 |
+
from peft import PeftModel, PeftConfig
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
11 |
|
12 |
+
# ====== CONFIG ======
|
13 |
+
DRIVE_FOLDER_URL = "https://drive.google.com/drive/folders/1S9xT92Zm9rZ4RSCxAe_DLld8vu78mqW4"
|
14 |
+
ADAPTER_DIR = "adapter"
|
15 |
+
TEMP_DIR = "gdrive_tmp"
|
16 |
+
BASE_MODEL = "Qwen/Qwen2.5-0.5B-Instruct"
|
17 |
|
18 |
+
# ====== FASTAPI SETUP ======
|
19 |
+
app = FastAPI()
|
20 |
|
21 |
+
class Message(BaseModel):
|
22 |
+
prompt: str
|
|
|
|
|
23 |
|
24 |
+
# ====== DOWNLOAD LATEST ADAPTER ======
|
25 |
+
def download_latest_adapter():
|
26 |
+
print("🔽 Downloading adapter folder from Google Drive...")
|
27 |
+
gdown.download_folder(url=DRIVE_FOLDER_URL, output=TEMP_DIR, quiet=False, use_cookies=False)
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
all_versions = sorted(
|
30 |
+
[d for d in os.listdir(TEMP_DIR) if re.match(r"version \d+", d)],
|
31 |
+
key=lambda x: int(x.split()[-1])
|
32 |
+
)
|
33 |
+
if not all_versions:
|
34 |
+
raise ValueError("❌ No adapter versions found.")
|
35 |
|
36 |
+
latest = all_versions[-1]
|
37 |
+
src = os.path.join(TEMP_DIR, latest)
|
38 |
|
39 |
+
os.makedirs(ADAPTER_DIR, exist_ok=True)
|
40 |
+
for f in os.listdir(ADAPTER_DIR):
|
41 |
+
os.remove(os.path.join(ADAPTER_DIR, f))
|
42 |
|
43 |
+
for f in os.listdir(src):
|
44 |
+
shutil.copy(os.path.join(src, f), os.path.join(ADAPTER_DIR, f))
|
45 |
+
|
46 |
+
print(f"✅ Adapter '{latest}' copied to '{ADAPTER_DIR}'")
|
47 |
+
|
48 |
+
# ====== LOAD MODEL ======
|
49 |
+
def load_model():
|
50 |
+
print("🔧 Loading base model...")
|
51 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
BASE_MODEL,
|
53 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
54 |
+
device_map="auto"
|
55 |
+
)
|
56 |
+
|
57 |
+
print("🔗 Loading LoRA adapter...")
|
58 |
+
model = PeftModel.from_pretrained(base_model, ADAPTER_DIR)
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
61 |
+
return model, tokenizer
|
62 |
+
|
63 |
+
# ====== RUN ======
|
64 |
+
download_latest_adapter()
|
65 |
+
model, tokenizer = load_model()
|
66 |
+
|
67 |
+
@app.post("/chat")
|
68 |
+
def chat(msg: Message):
|
69 |
+
prompt = msg.prompt.strip()
|
70 |
+
|
71 |
+
messages = [
|
72 |
+
{"role": "user", "content": prompt}
|
73 |
+
]
|
74 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
75 |
+
|
76 |
+
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
77 |
+
with torch.no_grad():
|
78 |
+
output = model.generate(
|
79 |
+
**inputs,
|
80 |
+
max_new_tokens=512,
|
81 |
+
do_sample=True,
|
82 |
+
temperature=0.7,
|
83 |
+
top_p=0.9
|
84 |
+
)
|
85 |
+
|
86 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
87 |
+
response = response.replace(text, "").strip()
|
88 |
|
89 |
+
return {"response": response}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|