Ais
commited on
Update app/main.py
Browse files- app/main.py +57 -26
app/main.py
CHANGED
@@ -1,49 +1,80 @@
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
2 |
from peft import PeftModel
|
3 |
import torch
|
4 |
-
import gdown
|
5 |
import os
|
6 |
-
import zipfile
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
|
10 |
ADAPTER_FOLDER = "adapter"
|
11 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
12 |
|
13 |
-
# Step 1: Download adapter zip from Drive (version 1)
|
14 |
-
zip_url = "https://drive.google.com/uc?id=1z8U98kW9GD29t-3v8LDu0SsdqJ_vzNvQ" # Your .zip file link
|
15 |
-
zip_path = "adapter.zip"
|
16 |
-
|
17 |
-
if not os.path.exists(ADAPTER_FOLDER):
|
18 |
-
print("📥 Downloading adapter...")
|
19 |
-
gdown.download(zip_url, zip_path, quiet=False)
|
20 |
-
|
21 |
-
print("📂 Extracting adapter...")
|
22 |
-
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
23 |
-
zip_ref.extractall(ADAPTER_FOLDER)
|
24 |
-
|
25 |
-
# Step 2: Load base model (non-quantized, CPU-friendly)
|
26 |
print("🚀 Loading base model...")
|
27 |
base_model = AutoModelForCausalLM.from_pretrained(
|
28 |
BASE_MODEL,
|
29 |
torch_dtype=torch.float16,
|
30 |
device_map="auto",
|
31 |
-
token=HF_TOKEN
|
|
|
32 |
)
|
33 |
|
34 |
-
# Step 3: Apply LoRA adapter
|
35 |
print("🔧 Applying LoRA adapter...")
|
36 |
model = PeftModel.from_pretrained(base_model, ADAPTER_FOLDER)
|
37 |
|
38 |
-
# Step 4: Load tokenizer
|
39 |
print("🧠 Loading tokenizer...")
|
40 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
41 |
|
42 |
-
# Step 5: Inference pipeline
|
43 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
44 |
|
45 |
-
# Step
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app/main.py
|
2 |
+
from fastapi import FastAPI, Form
|
3 |
+
from fastapi.responses import HTMLResponse
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
from peft import PeftModel
|
7 |
import torch
|
|
|
8 |
import os
|
|
|
9 |
|
10 |
+
from app.download_adapter import download_latest_adapter
|
11 |
+
|
12 |
+
# === Step 1: Download Adapter ===
|
13 |
+
download_latest_adapter()
|
14 |
+
|
15 |
+
# === Step 2: Load Model and Tokenizer ===
|
16 |
BASE_MODEL = "Qwen/Qwen2-0.5B-Instruct"
|
17 |
ADAPTER_FOLDER = "adapter"
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
print("🚀 Loading base model...")
|
21 |
base_model = AutoModelForCausalLM.from_pretrained(
|
22 |
BASE_MODEL,
|
23 |
torch_dtype=torch.float16,
|
24 |
device_map="auto",
|
25 |
+
token=HF_TOKEN,
|
26 |
+
trust_remote_code=True
|
27 |
)
|
28 |
|
|
|
29 |
print("🔧 Applying LoRA adapter...")
|
30 |
model = PeftModel.from_pretrained(base_model, ADAPTER_FOLDER)
|
31 |
|
|
|
32 |
print("🧠 Loading tokenizer...")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
34 |
|
|
|
35 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
36 |
|
37 |
+
# === Step 3: FastAPI App ===
|
38 |
+
app = FastAPI()
|
39 |
+
|
40 |
+
app.add_middleware(
|
41 |
+
CORSMiddleware,
|
42 |
+
allow_origins=["*"], # Allow all origins for testing
|
43 |
+
allow_credentials=True,
|
44 |
+
allow_methods=["*"],
|
45 |
+
allow_headers=["*"],
|
46 |
+
)
|
47 |
+
|
48 |
+
@app.get("/", response_class=HTMLResponse)
|
49 |
+
async def form():
|
50 |
+
return """
|
51 |
+
<html>
|
52 |
+
<head><title>Qwen Chat</title></head>
|
53 |
+
<body>
|
54 |
+
<h2>Ask something:</h2>
|
55 |
+
<form method="post">
|
56 |
+
<textarea name="prompt" rows="4" cols="60"></textarea><br>
|
57 |
+
<input type="submit" value="Generate">
|
58 |
+
</form>
|
59 |
+
</body>
|
60 |
+
</html>
|
61 |
+
"""
|
62 |
+
|
63 |
+
@app.post("/", response_class=HTMLResponse)
|
64 |
+
async def generate(prompt: str = Form(...)):
|
65 |
+
full_prompt = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
66 |
+
output = pipe(full_prompt, max_new_tokens=256, do_sample=True, temperature=0.7)
|
67 |
+
response = output[0]["generated_text"].split("<|im_start|>assistant\n")[-1].strip()
|
68 |
+
|
69 |
+
return f"""
|
70 |
+
<html>
|
71 |
+
<head><title>Qwen Chat</title></head>
|
72 |
+
<body>
|
73 |
+
<h2>Your Prompt:</h2>
|
74 |
+
<p>{prompt}</p>
|
75 |
+
<h2>Response:</h2>
|
76 |
+
<p>{response}</p>
|
77 |
+
<a href="/">Ask again</a>
|
78 |
+
</body>
|
79 |
+
</html>
|
80 |
+
"""
|