File size: 13,379 Bytes
f5fbd23 d8bea64 f5fbd23 9d6df4b 5b475af 8ad7e0c 9d6df4b d8bea64 8ad7e0c 5f52218 9d6df4b 5f52218 d8bea64 8ad7e0c d8bea64 8ad7e0c 5f52218 8ad7e0c 9d6df4b 5f52218 d8bea64 8ad7e0c 5f52218 8ad7e0c 5f52218 d8bea64 9d6df4b 8ad7e0c 9d6df4b 8ad7e0c 5f52218 8ad7e0c 5f52218 8ad7e0c 5f52218 d8bea64 5f52218 9d6df4b 5f52218 8ad7e0c 9d6df4b 5f52218 9d6df4b 5f52218 f5fbd23 5b475af f5fbd23 5b475af f5fbd23 5b475af f5fbd23 5b475af f5fbd23 9d6df4b f5fbd23 d8bea64 f5fbd23 d8bea64 f5fbd23 d8bea64 f5fbd23 9d6df4b f5fbd23 d8bea64 f5fbd23 d8bea64 f5fbd23 9d6df4b f5fbd23 9d6df4b f5fbd23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import cv2
import numpy as np
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
import torch
from PIL import Image
import faiss
from typing import List, Dict, Tuple
import logging
import gradio as gr
import tempfile
import os
import shutil
from tqdm import tqdm
import math
class VideoRAGTool:
def __init__(self, clip_model_name: str = "openai/clip-vit-base-patch32",
blip_model_name: str = "Salesforce/blip-image-captioning-base"):
"""Initialize with performance optimizations."""
# Setup logger first to avoid the attribute error
self.logger = self.setup_logger()
self.logger.info("Initializing VideoRAGTool...")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.logger.info(f"Using device: {self.device}")
# Initialize models with optimization flags
self.clip_model = CLIPModel.from_pretrained(clip_model_name).to(self.device)
self.clip_processor = CLIPProcessor.from_pretrained(clip_model_name)
self.blip_processor = BlipProcessor.from_pretrained(blip_model_name)
self.blip_model = BlipForConditionalGeneration.from_pretrained(blip_model_name).to(self.device)
# Enable eval mode for inference
self.clip_model.eval()
self.blip_model.eval()
# Batch processing settings
self.batch_size = 4 # Reduced batch size for better memory management
self.frame_index = None
self.frame_data = []
def setup_logger(self) -> logging.Logger:
"""Set up logging configuration."""
logger = logging.getLogger('VideoRAGTool')
# Clear any existing handlers
if logger.handlers:
logger.handlers.clear()
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
@torch.no_grad()
def generate_caption(self, image: Image.Image) -> str:
"""Optimized caption generation."""
try:
inputs = self.blip_processor(image, return_tensors="pt").to(self.device)
out = self.blip_model.generate(**inputs, max_length=30, num_beams=2)
caption = self.blip_processor.decode(out[0], skip_special_tokens=True)
return caption
except Exception as e:
self.logger.error(f"Error generating caption: {str(e)}")
return "Caption generation failed"
def get_video_info(self, video_path: str) -> Tuple[int, float]:
"""Get video frame count and FPS."""
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return total_frames, fps
def preprocess_frame(self, frame: np.ndarray, target_size: Tuple[int, int] = (224, 224)) -> Image.Image:
"""Preprocess frame with resizing for efficiency."""
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame_rgb)
return image.resize(target_size, Image.LANCZOS)
@torch.no_grad()
def process_batch(self, frames: List[Image.Image]) -> Tuple[np.ndarray, List[str]]:
"""Process a batch of frames efficiently."""
try:
# CLIP processing
clip_inputs = self.clip_processor(images=frames, return_tensors="pt", padding=True).to(self.device)
image_features = self.clip_model.get_image_features(**clip_inputs)
# BLIP processing
captions = []
for frame in frames:
caption = self.generate_caption(frame)
captions.append(caption)
return image_features.cpu().numpy(), captions
except Exception as e:
self.logger.error(f"Error processing batch: {str(e)}")
raise
def process_video(self, video_path: str, frame_interval: int = 30) -> None:
"""Optimized video processing with batching and progress tracking."""
self.logger.info(f"Processing video: {video_path}")
try:
total_frames, fps = self.get_video_info(video_path)
cap = cv2.VideoCapture(video_path)
# Calculate total batches for progress bar
frames_to_process = total_frames // frame_interval
total_batches = math.ceil(frames_to_process / self.batch_size)
current_batch = []
features_list = []
frame_count = 0
with tqdm(total=frames_to_process, desc="Processing frames") as pbar:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
# Preprocess frame
processed_frame = self.preprocess_frame(frame)
current_batch.append(processed_frame)
# Process batch when it reaches batch_size
if len(current_batch) == self.batch_size:
batch_features, batch_captions = self.process_batch(current_batch)
# Store results
for i, (features, caption) in enumerate(zip(batch_features, batch_captions)):
batch_frame_number = frame_count - (self.batch_size - i - 1) * frame_interval
self.frame_data.append({
'frame_number': batch_frame_number,
'timestamp': batch_frame_number / fps,
'caption': caption
})
features_list.append(features)
current_batch = []
pbar.update(self.batch_size)
frame_count += 1
# Process remaining frames
if current_batch:
batch_features, batch_captions = self.process_batch(current_batch)
for i, (features, caption) in enumerate(zip(batch_features, batch_captions)):
batch_frame_number = frame_count - (len(current_batch) - i - 1) * frame_interval
self.frame_data.append({
'frame_number': batch_frame_number,
'timestamp': batch_frame_number / fps,
'caption': caption
})
features_list.append(features)
cap.release()
if not features_list:
raise ValueError("No frames were processed from the video")
# Create FAISS index
features_array = np.vstack(features_list)
self.frame_index = faiss.IndexFlatL2(features_array.shape[1])
self.frame_index.add(features_array)
self.logger.info(f"Processed {len(self.frame_data)} frames from video")
except Exception as e:
self.logger.error(f"Error processing video: {str(e)}")
raise
def query_video(self, query_text: str, k: int = 5) -> List[Dict]:
"""Query the video using natural language and return relevant frames."""
self.logger.info(f"Processing query: {query_text}")
try:
inputs = self.clip_processor(text=[query_text], return_tensors="pt").to(self.device)
text_features = self.clip_model.get_text_features(**inputs)
distances, indices = self.frame_index.search(
text_features.cpu().detach().numpy(),
k
)
results = []
for i, (distance, idx) in enumerate(zip(distances[0], indices[0])):
frame_info = self.frame_data[idx].copy()
frame_info['relevance_score'] = float(1 / (1 + distance))
results.append(frame_info)
return results
except Exception as e:
self.logger.error(f"Error querying video: {str(e)}")
raise
class VideoRAGApp:
def __init__(self):
self.rag_tool = VideoRAGTool()
self.current_video_path = None
self.processed = False
self.temp_dir = tempfile.mkdtemp()
def __del__(self):
"""Cleanup temporary files on deletion"""
if hasattr(self, 'temp_dir') and os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir, ignore_errors=True)
def process_video(self, video_file):
"""Process uploaded video and return status message"""
try:
if video_file is None:
return "Please upload a video first."
video_path = video_file.name
temp_video_path = os.path.join(self.temp_dir, "current_video.mp4")
shutil.copy2(video_path, temp_video_path)
self.current_video_path = temp_video_path
self.rag_tool.process_video(self.current_video_path)
self.processed = True
return "Video processed successfully! You can now ask questions about the video."
except Exception as e:
self.processed = False
return f"Error processing video: {str(e)}"
def query_video(self, query_text):
"""Query the video and return relevant frames with descriptions"""
if not self.processed:
return None, "Please process a video first."
try:
results = self.rag_tool.query_video(query_text, k=4)
frames = []
descriptions = []
cap = cv2.VideoCapture(self.current_video_path)
for result in results:
frame_number = result['frame_number']
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame_rgb))
description = f"Timestamp: {result['timestamp']:.2f}s\n"
description += f"Scene Description: {result['caption']}\n"
description += f"Relevance Score: {result['relevance_score']:.2f}"
descriptions.append(description)
cap.release()
# Combine all descriptions with frame numbers
combined_description = "\n\nFrame Analysis:\n\n"
for i, desc in enumerate(descriptions, 1):
combined_description += f"Frame {i}:\n{desc}\n\n"
return frames, combined_description
except Exception as e:
return None, f"Error querying video: {str(e)}"
def create_interface(self):
"""Create and return Gradio interface"""
with gr.Blocks(title="Video Chat RAG") as interface:
gr.Markdown("# Video Chat RAG")
gr.Markdown("Upload a video and ask questions about its content!")
with gr.Row():
video_input = gr.File(
label="Upload Video",
file_types=["video"],
)
process_button = gr.Button("Process Video")
status_output = gr.Textbox(
label="Status",
interactive=False
)
with gr.Row():
query_input = gr.Textbox(
label="Ask about the video",
placeholder="What's happening in the video?"
)
query_button = gr.Button("Search")
with gr.Row():
gallery = gr.Gallery(
label="Retrieved Frames",
show_label=True,
elem_id="gallery",
columns=[2],
rows=[2],
height="auto"
)
descriptions = gr.Textbox(
label="Scene Descriptions",
interactive=False,
lines=10
)
process_button.click(
fn=self.process_video,
inputs=[video_input],
outputs=[status_output]
)
query_button.click(
fn=self.query_video,
inputs=[query_input],
outputs=[gallery, descriptions]
)
return interface
# Initialize and create the interface
app = VideoRAGApp()
interface = app.create_interface()
# Launch the app
if __name__ == "__main__":
interface.launch() |