File size: 12,057 Bytes
f5fbd23
 
d8bea64
f5fbd23
9d6df4b
 
 
 
 
 
 
 
5b475af
8ad7e0c
 
 
 
 
9d6df4b
 
d8bea64
 
8ad7e0c
9d6df4b
d8bea64
8ad7e0c
d8bea64
 
 
 
 
8ad7e0c
 
 
 
 
 
 
9d6df4b
 
 
 
8ad7e0c
d8bea64
8ad7e0c
d8bea64
8ad7e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bea64
9d6df4b
8ad7e0c
9d6df4b
8ad7e0c
 
9d6df4b
8ad7e0c
 
 
 
 
 
9d6df4b
8ad7e0c
9d6df4b
8ad7e0c
 
 
 
 
9d6df4b
8ad7e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bea64
8ad7e0c
9d6df4b
8ad7e0c
 
 
 
 
 
 
 
 
 
 
 
9d6df4b
 
5b475af
 
8ad7e0c
 
9d6df4b
 
 
 
 
 
8ad7e0c
9d6df4b
 
 
 
d8bea64
 
9d6df4b
 
 
 
 
 
 
 
 
 
 
 
 
f5fbd23
 
 
 
 
 
5b475af
 
 
 
 
 
f5fbd23
 
 
 
5b475af
 
 
 
 
 
 
 
 
 
f5fbd23
 
5b475af
f5fbd23
5b475af
f5fbd23
 
 
 
 
9d6df4b
f5fbd23
 
 
 
 
d8bea64
f5fbd23
 
 
 
 
 
 
 
 
 
 
 
d8bea64
 
 
 
f5fbd23
 
 
d8bea64
 
 
 
 
 
f5fbd23
 
9d6df4b
f5fbd23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bea64
 
 
 
f5fbd23
 
 
 
 
 
 
 
 
 
 
d8bea64
f5fbd23
 
 
 
9d6df4b
f5fbd23
 
 
9d6df4b
f5fbd23
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import cv2
import numpy as np
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
import torch
from PIL import Image
import faiss
import pickle
from typing import List, Dict, Tuple
import logging
import gradio as gr
import tempfile
import os
import shutil
from tqdm import tqdm
import torch.nn as nn
import math
from concurrent.futures import ThreadPoolExecutor
import numpy as np

class VideoRAGTool:
    def __init__(self, clip_model_name: str = "openai/clip-vit-base-patch32",
                 blip_model_name: str = "Salesforce/blip-image-captioning-base"):
        """Initialize with performance optimizations."""
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # Initialize models with optimization flags
        self.clip_model = CLIPModel.from_pretrained(clip_model_name).to(self.device)
        self.clip_processor = CLIPProcessor.from_pretrained(clip_model_name)
        self.blip_processor = BlipProcessor.from_pretrained(blip_model_name)
        self.blip_model = BlipForConditionalGeneration.from_pretrained(blip_model_name).to(self.device)
        
        # Enable eval mode for inference
        self.clip_model.eval()
        self.blip_model.eval()
        
        # Batch processing settings
        self.batch_size = 8  # Adjust based on your GPU memory
        
        self.frame_index = None
        self.frame_data = []
        self.logger = self._setup_logger()

    @torch.no_grad()  # Disable gradient computation for inference
    def generate_caption(self, image: Image.Image) -> str:
        """Optimized caption generation."""
        inputs = self.blip_processor(image, return_tensors="pt").to(self.device)
        out = self.blip_model.generate(**inputs, max_length=30, num_beams=2)
        return self.blip_processor.decode(out[0], skip_special_tokens=True)

    def get_video_info(self, video_path: str) -> Tuple[int, float]:
        """Get video frame count and FPS."""
        cap = cv2.VideoCapture(video_path)
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        fps = cap.get(cv2.CAP_PROP_FPS)
        cap.release()
        return total_frames, fps

    def preprocess_frame(self, frame: np.ndarray, target_size: Tuple[int, int] = (224, 224)) -> Image.Image:
        """Preprocess frame with resizing for efficiency."""
        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        image = Image.fromarray(frame_rgb)
        return image.resize(target_size, Image.LANCZOS)

    @torch.no_grad()
    def process_batch(self, frames: List[Image.Image]) -> Tuple[np.ndarray, List[str]]:
        """Process a batch of frames efficiently."""
        # CLIP processing
        clip_inputs = self.clip_processor(images=frames, return_tensors="pt", padding=True).to(self.device)
        image_features = self.clip_model.get_image_features(**clip_inputs)
        
        # BLIP processing
        captions = []
        blip_inputs = self.blip_processor(images=frames, return_tensors="pt", padding=True).to(self.device)
        out = self.blip_model.generate(**blip_inputs, max_length=30, num_beams=2)
        
        for o in out:
            caption = self.blip_processor.decode(o, skip_special_tokens=True)
            captions.append(caption)
        
        return image_features.cpu().numpy(), captions

    def process_video(self, video_path: str, frame_interval: int = 30) -> None:
        """Optimized video processing with batching and progress tracking."""
        self.logger.info(f"Processing video: {video_path}")
        
        total_frames, fps = self.get_video_info(video_path)
        cap = cv2.VideoCapture(video_path)
        
        # Calculate total batches for progress bar
        frames_to_process = total_frames // frame_interval
        total_batches = math.ceil(frames_to_process / self.batch_size)
        
        current_batch = []
        features_list = []
        frame_count = 0
        
        with tqdm(total=frames_to_process, desc="Processing frames") as pbar:
            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break
                
                if frame_count % frame_interval == 0:
                    # Preprocess frame
                    processed_frame = self.preprocess_frame(frame)
                    current_batch.append(processed_frame)
                    
                    # Process batch when it reaches batch_size
                    if len(current_batch) == self.batch_size:
                        batch_features, batch_captions = self.process_batch(current_batch)
                        
                        # Store results
                        for i, (features, caption) in enumerate(zip(batch_features, batch_captions)):
                            batch_frame_number = frame_count - (self.batch_size - i - 1) * frame_interval
                            self.frame_data.append({
                                'frame_number': batch_frame_number,
                                'timestamp': batch_frame_number / fps,
                                'caption': caption
                            })
                            features_list.append(features)
                        
                        current_batch = []
                        pbar.update(self.batch_size)
                
                frame_count += 1
            
            # Process remaining frames
            if current_batch:
                batch_features, batch_captions = self.process_batch(current_batch)
                for i, (features, caption) in enumerate(zip(batch_features, batch_captions)):
                    batch_frame_number = frame_count - (len(current_batch) - i - 1) * frame_interval
                    self.frame_data.append({
                        'frame_number': batch_frame_number,
                        'timestamp': batch_frame_number / fps,
                        'caption': caption
                    })
                    features_list.append(features)
        
        cap.release()
        
        if not features_list:
            raise ValueError("No frames were processed from the video")
        
        # Create FAISS index
        features_array = np.vstack(features_list)
        self.frame_index = faiss.IndexFlatL2(features_array.shape[1])
        self.frame_index.add(features_array)
        
        self.logger.info(f"Processed {len(self.frame_data)} frames from video")


    def query_video(self, query_text: str, k: int = 5) -> List[Dict]:
        """Query the video using natural language and return relevant frames."""
        self.logger.info(f"Processing query: {query_text}")
        
        inputs = self.clip_processor(text=[query_text], return_tensors="pt").to(self.device)
        text_features = self.clip_model.get_text_features(**inputs)
        
        distances, indices = self.frame_index.search(
            text_features.cpu().detach().numpy(), 
            k
        )
        
        results = []
        for i, (distance, idx) in enumerate(zip(distances[0], indices[0])):
            frame_info = self.frame_data[idx].copy()
            frame_info['relevance_score'] = float(1 / (1 + distance))
            results.append(frame_info)
            
        return results

class VideoRAGApp:
    def __init__(self):
        self.rag_tool = VideoRAGTool()
        self.current_video_path = None
        self.processed = False
        self.temp_dir = tempfile.mkdtemp()

    def __del__(self):
        """Cleanup temporary files on deletion"""
        if hasattr(self, 'temp_dir') and os.path.exists(self.temp_dir):
            shutil.rmtree(self.temp_dir, ignore_errors=True)

    def process_video(self, video_file):
        """Process uploaded video and return status message"""
        try:
            if video_file is None:
                return "Please upload a video first."

            video_path = video_file.name
            temp_video_path = os.path.join(self.temp_dir, "current_video.mp4")
            shutil.copy2(video_path, temp_video_path)
            
            self.current_video_path = temp_video_path
            
            self.rag_tool.process_video(self.current_video_path)
            self.processed = True
            return "Video processed successfully! You can now ask questions about the video."
            
        except Exception as e:
            self.processed = False
            return f"Error processing video: {str(e)}"

    def query_video(self, query_text):
        """Query the video and return relevant frames with descriptions"""
        if not self.processed:
            return None, "Please process a video first."
        
        try:
            results = self.rag_tool.query_video(query_text, k=4)
            
            frames = []
            descriptions = []
            
            cap = cv2.VideoCapture(self.current_video_path)
            
            for result in results:
                frame_number = result['frame_number']
                cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
                ret, frame = cap.read()
                
                if ret:
                    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    frames.append(Image.fromarray(frame_rgb))
                    
                    description = f"Timestamp: {result['timestamp']:.2f}s\n"
                    description += f"Scene Description: {result['caption']}\n"
                    description += f"Relevance Score: {result['relevance_score']:.2f}"
                    descriptions.append(description)
            
            cap.release()
            
            # Combine all descriptions with frame numbers
            combined_description = "\n\nFrame Analysis:\n\n"
            for i, desc in enumerate(descriptions, 1):
                combined_description += f"Frame {i}:\n{desc}\n\n"
            
            return frames, combined_description
            
        except Exception as e:
            return None, f"Error querying video: {str(e)}"

    def create_interface(self):
        """Create and return Gradio interface"""
        with gr.Blocks(title="Video Chat RAG") as interface:
            gr.Markdown("# Video Chat RAG")
            gr.Markdown("Upload a video and ask questions about its content!")
            
            with gr.Row():
                video_input = gr.File(
                    label="Upload Video",
                    file_types=["video"],
                )
                process_button = gr.Button("Process Video")
            
            status_output = gr.Textbox(
                label="Status",
                interactive=False
            )
            
            with gr.Row():
                query_input = gr.Textbox(
                    label="Ask about the video",
                    placeholder="What's happening in the video?"
                )
                query_button = gr.Button("Search")
            
            with gr.Row():
                gallery = gr.Gallery(
                    label="Retrieved Frames",
                    show_label=True,
                    elem_id="gallery",
                    columns=[2],
                    rows=[2],
                    height="auto"
                )
                
            descriptions = gr.Textbox(
                label="Scene Descriptions",
                interactive=False,
                lines=10
            )
            
            process_button.click(
                fn=self.process_video,
                inputs=[video_input],
                outputs=[status_output]
            )
            
            query_button.click(
                fn=self.query_video,
                inputs=[query_input],
                outputs=[gallery, descriptions]
            )
        
        return interface

# Initialize and create the interface
app = VideoRAGApp()
interface = app.create_interface()

# Launch the app
if __name__ == "__main__":
    interface.launch()