Adventure123's picture
Update app.py
c17af4e verified
raw
history blame
4.44 kB
import os
import streamlit as st
from huggingface_hub import InferenceClient
from langchain_community.vectorstores import Neo4jVector
from transformers import AutoTokenizer, AutoModel
import torch
# Custom Embedding Class
class CustomHuggingFaceEmbeddings:
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
def embed_text(self, text):
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = self.model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
def embed_query(self, text):
return self.embed_text(text)
def embed_documents(self, text):
return self.embed_text(text)
# Function to set up the Neo4j Vector Index
@st.cache_resource
def setup_vector_index():
return Neo4jVector.from_existing_graph(
CustomHuggingFaceEmbeddings(),
url=os.environ['NEO4J_URI'],
username=os.environ['NEO4J_USERNAME'],
password=os.environ['NEO4J_PASSWORD'],
index_name='articles',
node_label="Article",
text_node_properties=['topic', 'title', 'abstract'],
embedding_node_property='embedding',
)
# Hugging Face API Setup
API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN")
MISTRAL_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3"
client = InferenceClient(api_key=API_TOKEN)
# Query Mistral
def query_from_mistral(context: str, user_input: str):
messages = [
{"role": "system", "content": f"Use the following context to answer the query:\n{context}"},
{"role": "user", "content": user_input},
]
completion = client.chat.completions.create(
model=MISTRAL_MODEL_NAME,
messages=messages,
max_tokens=500,
)
return completion.choices[0].message["content"]
# extract data from retriever response
def extract_data(documents):
result = []
for doc in documents:
# Extract metadata
publication_date = doc.metadata.get('publication_date')
if publication_date:
publication_date = publication_date.isoformat()
# Extract page content
page_content = doc.page_content.strip().split("\n")
topic = page_content[1].strip() if len(page_content) > 1 else "N/A"
title = page_content[2].strip() if len(page_content) > 2 else "N/A"
abstract = page_content[3].strip() if len(page_content) > 3 else "N/A"
# Format the extracted data as a string
doc_data = (
f"Publication Date: {publication_date}\n"
f"Topic: {topic}\n"
f"Title: {title}\n"
f"Abstract: {abstract}\n"
)
result.append(doc_data)
return result
# Main Streamlit Application
def main():
st.set_page_config(page_title="Vector Chat with Mistral", layout="centered")
st.title("πŸ€– Vector Chat with Mistral")
st.markdown("Chat with **Mistral-7B-Instruct** using context retrieved from a Neo4j vector index.")
# Initialize the vector index
vector_index = setup_vector_index()
if "messages" not in st.session_state:
st.session_state.messages = []
with st.form(key="chat_form", clear_on_submit=True):
user_input = st.text_input("You:", "")
submit = st.form_submit_button("Send")
if submit and user_input:
st.session_state.messages.append({"role": "user", "content": user_input})
with st.spinner("Fetching response..."):
try:
# Retrieve context from the vector index
context_results = vector_index.similarity_search(user_input, top_k=3)
context = extract_data(context_results)[0]
# Get response from Mistral
response = query_from_mistral(context, user_input)
st.session_state.messages.append({"role": "bot", "content": response})
except Exception as e:
st.error(f"Error: {e}")
# Display chat history
for message in st.session_state.messages:
if message["role"] == "user":
st.markdown(f"**You:** {message['content']}")
elif message["role"] == "bot":
st.markdown(f"**Bot:** {message['content']}")
if __name__ == "__main__":
main()