Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,53 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import time
|
3 |
-
import requests
|
4 |
import os
|
|
|
5 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Hugging Face API Setup
|
8 |
API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN")
|
9 |
-
GPT2XL_API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2-xl"
|
10 |
MISTRAL_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3"
|
11 |
client = InferenceClient(api_key=API_TOKEN)
|
12 |
|
13 |
-
# Query GPT-2 XL
|
14 |
-
def query_from_gpt2xl(text: str):
|
15 |
-
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
16 |
-
while True:
|
17 |
-
response = requests.post(GPT2XL_API_URL, headers=headers, json={"inputs": text})
|
18 |
-
response_data = response.json()
|
19 |
-
if "error" in response_data and "loading" in response_data["error"]:
|
20 |
-
wait_time = response_data.get("estimated_time", 10)
|
21 |
-
st.info(f"Model is loading. Waiting for {wait_time:.2f} seconds...")
|
22 |
-
time.sleep(wait_time)
|
23 |
-
else:
|
24 |
-
return response_data[0]["generated_text"]
|
25 |
-
|
26 |
# Query Mistral
|
27 |
-
def query_from_mistral(
|
28 |
-
messages = [
|
|
|
|
|
|
|
29 |
completion = client.chat.completions.create(
|
30 |
model=MISTRAL_MODEL_NAME,
|
31 |
messages=messages,
|
@@ -33,32 +55,65 @@ def query_from_mistral(text: str):
|
|
33 |
)
|
34 |
return completion.choices[0].message["content"]
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def main():
|
37 |
-
st.set_page_config(page_title="
|
38 |
-
st.title("🤖
|
39 |
-
st.markdown("Chat with
|
|
|
|
|
|
|
40 |
|
41 |
if "messages" not in st.session_state:
|
42 |
st.session_state.messages = []
|
43 |
|
44 |
-
model_choice = st.selectbox("Select a model:", ["GPT-2 XL", "Mistral-7B-Instruct"])
|
45 |
-
|
46 |
with st.form(key="chat_form", clear_on_submit=True):
|
47 |
user_input = st.text_input("You:", "")
|
48 |
submit = st.form_submit_button("Send")
|
49 |
|
50 |
if submit and user_input:
|
51 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
|
|
52 |
with st.spinner("Fetching response..."):
|
53 |
try:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
58 |
st.session_state.messages.append({"role": "bot", "content": response})
|
59 |
except Exception as e:
|
60 |
st.error(f"Error: {e}")
|
61 |
|
|
|
62 |
for message in st.session_state.messages:
|
63 |
if message["role"] == "user":
|
64 |
st.markdown(f"**You:** {message['content']}")
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import streamlit as st
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
from langchain_community.vectorstores import Neo4jVector
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Custom Embedding Class
|
9 |
+
class CustomHuggingFaceEmbeddings:
|
10 |
+
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
11 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
self.model = AutoModel.from_pretrained(model_name)
|
13 |
+
|
14 |
+
def embed_text(self, text):
|
15 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = self.model(**inputs)
|
18 |
+
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
|
19 |
+
|
20 |
+
def embed_query(self, text):
|
21 |
+
return self.embed_text(text)
|
22 |
+
|
23 |
+
def embed_documents(self, text):
|
24 |
+
return self.embed_text(text)
|
25 |
+
|
26 |
+
# Function to set up the Neo4j Vector Index
|
27 |
+
@st.cache_resource
|
28 |
+
def setup_vector_index():
|
29 |
+
return Neo4jVector.from_existing_graph(
|
30 |
+
CustomHuggingFaceEmbeddings(),
|
31 |
+
url=os.environ['NEO4J_URI'],
|
32 |
+
username=os.environ['NEO4J_USERNAME'],
|
33 |
+
password=os.environ['NEO4J_PASSWORD'],
|
34 |
+
index_name='articles',
|
35 |
+
node_label="Article",
|
36 |
+
text_node_properties=['topic', 'title', 'abstract'],
|
37 |
+
embedding_node_property='embedding',
|
38 |
+
)
|
39 |
|
40 |
# Hugging Face API Setup
|
41 |
API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN")
|
|
|
42 |
MISTRAL_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3"
|
43 |
client = InferenceClient(api_key=API_TOKEN)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Query Mistral
|
46 |
+
def query_from_mistral(context: str, user_input: str):
|
47 |
+
messages = [
|
48 |
+
{"role": "system", "content": f"Use the following context to answer the query:\n{context}"},
|
49 |
+
{"role": "user", "content": user_input},
|
50 |
+
]
|
51 |
completion = client.chat.completions.create(
|
52 |
model=MISTRAL_MODEL_NAME,
|
53 |
messages=messages,
|
|
|
55 |
)
|
56 |
return completion.choices[0].message["content"]
|
57 |
|
58 |
+
# extract data from retriever response
|
59 |
+
def extract_data(documents):
|
60 |
+
result = []
|
61 |
+
|
62 |
+
for doc in documents:
|
63 |
+
# Extract metadata
|
64 |
+
publication_date = doc.metadata.get('publication_date')
|
65 |
+
if publication_date:
|
66 |
+
publication_date = publication_date.isoformat()
|
67 |
+
|
68 |
+
# Extract page content
|
69 |
+
page_content = doc.page_content.strip().split("\n")
|
70 |
+
topic = page_content[1].strip() if len(page_content) > 1 else "N/A"
|
71 |
+
title = page_content[2].strip() if len(page_content) > 2 else "N/A"
|
72 |
+
abstract = page_content[3].strip() if len(page_content) > 3 else "N/A"
|
73 |
+
|
74 |
+
# Format the extracted data as a string
|
75 |
+
doc_data = (
|
76 |
+
f"Publication Date: {publication_date}\n"
|
77 |
+
f"Topic: {topic}\n"
|
78 |
+
f"Title: {title}\n"
|
79 |
+
f"Abstract: {abstract}\n"
|
80 |
+
)
|
81 |
+
result.append(doc_data)
|
82 |
+
|
83 |
+
return result
|
84 |
+
|
85 |
+
# Main Streamlit Application
|
86 |
def main():
|
87 |
+
st.set_page_config(page_title="Vector Chat with Mistral", layout="centered")
|
88 |
+
st.title("🤖 Vector Chat with Mistral")
|
89 |
+
st.markdown("Chat with **Mistral-7B-Instruct** using context retrieved from a Neo4j vector index.")
|
90 |
+
|
91 |
+
# Initialize the vector index
|
92 |
+
vector_index = setup_vector_index()
|
93 |
|
94 |
if "messages" not in st.session_state:
|
95 |
st.session_state.messages = []
|
96 |
|
|
|
|
|
97 |
with st.form(key="chat_form", clear_on_submit=True):
|
98 |
user_input = st.text_input("You:", "")
|
99 |
submit = st.form_submit_button("Send")
|
100 |
|
101 |
if submit and user_input:
|
102 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
103 |
+
|
104 |
with st.spinner("Fetching response..."):
|
105 |
try:
|
106 |
+
# Retrieve context from the vector index
|
107 |
+
context_results = vector_index.similarity_search(user_input, top_k=3)
|
108 |
+
context = extract_data(context_results)[0]
|
109 |
+
|
110 |
+
# Get response from Mistral
|
111 |
+
response = query_from_mistral(context, user_input)
|
112 |
st.session_state.messages.append({"role": "bot", "content": response})
|
113 |
except Exception as e:
|
114 |
st.error(f"Error: {e}")
|
115 |
|
116 |
+
# Display chat history
|
117 |
for message in st.session_state.messages:
|
118 |
if message["role"] == "user":
|
119 |
st.markdown(f"**You:** {message['content']}")
|