import os import streamlit as st from huggingface_hub import InferenceClient from langchain_community.vectorstores import Neo4jVector from transformers import AutoTokenizer, AutoModel import torch # Custom Embedding Class class CustomHuggingFaceEmbeddings: def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModel.from_pretrained(model_name) def embed_text(self, text): inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = self.model(**inputs) return outputs.last_hidden_state.mean(dim=1).squeeze().tolist() def embed_query(self, text): return self.embed_text(text) def embed_documents(self, text): return self.embed_text(text) # Function to set up the Neo4j Vector Index @st.cache_resource def setup_vector_index(): return Neo4jVector.from_existing_graph( CustomHuggingFaceEmbeddings(), url=os.environ['NEO4J_URI'], username=os.environ['NEO4J_USERNAME'], password=os.environ['NEO4J_PASSWORD'], index_name='articles', node_label="Article", text_node_properties=['topic', 'title', 'abstract'], embedding_node_property='embedding', ) # Hugging Face API Setup API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN") MISTRAL_MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3" client = InferenceClient(api_key=API_TOKEN) # Query Mistral def query_from_mistral(context: str, user_input: str): messages = [ {"role": "system", "content": f"Use the following context to answer the query:\n{context}"}, {"role": "user", "content": user_input}, ] completion = client.chat.completions.create( model=MISTRAL_MODEL_NAME, messages=messages, max_tokens=500, ) return completion.choices[0].message["content"] # extract data from retriever response def extract_data(documents): result = [] for doc in documents: # Extract metadata publication_date = doc.metadata.get('publication_date') if publication_date: publication_date = publication_date.isoformat() # Extract page content page_content = doc.page_content.strip().split("\n") topic = page_content[1].strip() if len(page_content) > 1 else "N/A" title = page_content[2].strip() if len(page_content) > 2 else "N/A" abstract = page_content[3].strip() if len(page_content) > 3 else "N/A" # Format the extracted data as a string doc_data = ( f"Publication Date: {publication_date}\n" f"Topic: {topic}\n" f"Title: {title}\n" f"Abstract: {abstract}\n" ) result.append(doc_data) return result # Main Streamlit Application def main(): st.set_page_config(page_title="Vector Chat with Mistral", layout="centered") st.title("🤖 Vector Chat with Mistral") st.markdown("Chat with **Mistral-7B-Instruct** using context retrieved from a Neo4j vector index.") # Initialize the vector index vector_index = setup_vector_index() if "messages" not in st.session_state: st.session_state.messages = [] with st.form(key="chat_form", clear_on_submit=True): user_input = st.text_input("You:", "") submit = st.form_submit_button("Send") if submit and user_input: st.session_state.messages.append({"role": "user", "content": user_input}) with st.spinner("Fetching response..."): try: # Retrieve context from the vector index context_results = vector_index.similarity_search(user_input, top_k=3) context = extract_data(context_results)[0] # Get response from Mistral response = query_from_mistral(context, user_input) st.session_state.messages.append({"role": "bot", "content": response}) except Exception as e: st.error(f"Error: {e}") # Display chat history for message in st.session_state.messages: if message["role"] == "user": st.markdown(f"**You:** {message['content']}") elif message["role"] == "bot": st.markdown(f"**Bot:** {message['content']}") if __name__ == "__main__": main()