Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# βββ Residual Pocket Block βββββββββββββββββββββββββββββββββββ | |
class BottleneckResBlock(nn.Module): | |
def __init__(self, dim, kernel=3, dropout=0.1): | |
super().__init__() | |
self.norm = nn.LayerNorm(dim) | |
self.conv = nn.Conv1d(dim, dim, kernel_size=kernel, padding=kernel // 2, groups=1) | |
self.proj = nn.Sequential( | |
nn.Linear(dim, dim * 2), | |
nn.GELU(), | |
nn.Linear(dim * 2, dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
residual = x | |
x = self.norm(x) | |
x = x.transpose(1, 2) | |
x = self.conv(x).transpose(1, 2) | |
return residual + self.proj(x) | |
# βββ Two Stream Shunt Adapter ββββββββββββββββββββββββββββββββββββββ | |
class TwoStreamShuntAdapter(nn.Module): | |
def __init__(self, config: dict): | |
super().__init__() | |
self.config = config | |
self.t5_dim = config["t5"]["hidden_size"] | |
self.clip_dim = config["clip"]["hidden_size"] | |
self.bneck = config["bottleneck"] | |
self.heads = config["heads"] | |
self.tau_init = config["tau_init"] | |
self.max_guidance = config["max_guidance"] | |
use_norm = config.get("layer_norm", True) | |
use_do = config.get("use_dropout", True) | |
do_p = config.get("dropout", 0.1) | |
proj_depth = config.get("proj_layers", 2) | |
def build_projection(input_dim, output_dim): | |
layers = [] | |
last_dim = input_dim | |
if use_norm: | |
layers.append(nn.LayerNorm(last_dim)) | |
for i in range(proj_depth): | |
next_dim = self.bneck * (2 if i == 0 and proj_depth > 1 else 1) | |
layers.append(nn.Linear(last_dim, next_dim)) | |
layers.append(nn.GELU()) | |
if use_do: | |
layers.append(nn.Dropout(do_p)) | |
last_dim = next_dim | |
layers.append(nn.Linear(last_dim, output_dim)) | |
return nn.Sequential(*layers) | |
# Projections | |
self.proj_t5 = build_projection(self.t5_dim, self.bneck) | |
self.proj_clip = build_projection(self.clip_dim, self.bneck) | |
# Attention | |
self.cross_t2c = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p) | |
self.cross_c2t = nn.MultiheadAttention(self.bneck, self.heads, batch_first=True, dropout=do_p) | |
self.tau = nn.Parameter(torch.full((self.heads, 1, 1), self.tau_init)) | |
# Residual Pocket | |
self.pocket_blocks = nn.Sequential( | |
BottleneckResBlock(self.bneck, dropout=do_p), | |
BottleneckResBlock(self.bneck, dropout=do_p) | |
) | |
# Fuse | |
self.fuse = nn.Sequential( | |
nn.LayerNorm(2 * self.bneck), | |
nn.Linear(2 * self.bneck, self.bneck * 2), | |
nn.GELU(), | |
nn.Linear(self.bneck * 2, self.bneck) | |
) | |
# Output Projections | |
self.anchor_proj = build_projection(self.bneck, self.clip_dim) | |
self.delta_proj = build_projection(self.bneck, self.clip_dim) | |
self.logsig_proj = build_projection(self.bneck, self.clip_dim) | |
self.gate_proj = nn.Sequential( | |
nn.LayerNorm(self.bneck), | |
nn.Linear(self.bneck, self.bneck), | |
nn.GELU(), | |
nn.Linear(self.bneck, 1), | |
nn.Tanh(), | |
nn.Sigmoid() | |
) | |
self.guidance_proj = nn.Sequential( | |
nn.LayerNorm(self.bneck), | |
nn.Linear(self.bneck, 1), | |
nn.Sigmoid() | |
) | |
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor): | |
if self.config.get("assert_input_dims", True): | |
assert t5_seq.size(-1) == self.t5_dim | |
assert clip_seq.size(-1) == self.clip_dim | |
t5_b = self.proj_t5(t5_seq) | |
clip_b = self.proj_clip(clip_seq) | |
t2c, attn_t2c = self.cross_t2c(t5_b, clip_b, clip_b, need_weights=True, average_attn_weights=False) | |
c2t, attn_c2t = self.cross_c2t(clip_b, t5_b, t5_b, need_weights=True, average_attn_weights=False) | |
pocket = self.pocket_blocks(t2c) | |
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, clip_b.size(1), -1) | |
h = self.fuse(torch.cat([pocket_mean, c2t], dim=-1)) | |
anchor = self.anchor_proj(h) | |
delta = self.delta_proj(h) * self.gate_proj(h) | |
log_sigma = self.logsig_proj(h) | |
g_tok = self.guidance_proj(h).squeeze(-1) | |
g_pred = g_tok.mean(1, keepdim=True) * self.max_guidance | |
return anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, self.gate_proj(h) | |