Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -87,93 +87,57 @@ def pool_accuracy(ids, logits, pool_mask):
|
|
87 |
def encode_and_trace(text, selected_roles):
|
88 |
if not selected_roles:
|
89 |
selected_roles = SYMBOLIC_ROLES
|
|
|
|
|
90 |
sel_ids = [tokenizer.convert_tokens_to_ids(t) for t in selected_roles]
|
91 |
-
sel_ids_tensor = torch.tensor(sel_ids, device="cuda")
|
92 |
|
93 |
-
# Tokenize
|
94 |
batch = tokenizer(text, return_tensors="pt").to("cuda")
|
95 |
-
|
96 |
-
S =
|
97 |
|
98 |
-
#
|
99 |
def encode(input_ids, attn_mask):
|
100 |
-
x = embeddings(input_ids)
|
101 |
if emb_ln: x = emb_ln(x)
|
102 |
if emb_drop: x = emb_drop(x)
|
103 |
-
ext = full_model.bert.get_extended_attention_mask(attn_mask,
|
104 |
-
return encoder(x, attention_mask=ext)[0] #
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
pool = best_pool + cand.tolist()
|
126 |
-
ptr += 2
|
127 |
-
|
128 |
-
mask_flags = torch.zeros_like(ids, dtype=torch.bool)
|
129 |
-
mask_flags[0, pool] = True
|
130 |
-
masked_input = ids.where(mask_flags, MASK_ID)
|
131 |
-
|
132 |
-
encoded_m = encode(masked_input, attn)
|
133 |
-
logits = mlm_head(encoded_m) # (1, S, V)
|
134 |
-
preds = logits.argmax(-1) # (1, S)
|
135 |
-
|
136 |
-
masked_positions = (~mask_flags[0]).nonzero(as_tuple=True)[0] # 1D tensor
|
137 |
-
if masked_positions.numel() == 0:
|
138 |
-
continue
|
139 |
-
|
140 |
-
# Extract both predicted and gold tokens
|
141 |
-
pred_tokens = preds[0, masked_positions]
|
142 |
-
gold_tokens = ids[0, masked_positions]
|
143 |
-
correct = (pred_tokens == gold_tokens).float()
|
144 |
-
acc = correct.mean().item()
|
145 |
-
|
146 |
-
if acc > best_acc:
|
147 |
-
best_pool, best_acc = pool, acc
|
148 |
-
if acc >= 0.5:
|
149 |
-
break
|
150 |
-
|
151 |
-
return best_pool, best_acc
|
152 |
-
|
153 |
-
# Run both pools
|
154 |
-
pool_hi, acc_hi = evaluate_pool(hi_idx, "high", ids)
|
155 |
-
pool_lo, acc_lo = evaluate_pool(lo_idx, "low", ids)
|
156 |
-
|
157 |
-
# Alignment trace
|
158 |
-
decoded_tokens = tokenizer.convert_ids_to_tokens(ids[0])
|
159 |
role_trace = [
|
160 |
-
f"{tok:<15} → {role}
|
161 |
-
for tok, role, score in zip(decoded_tokens,
|
162 |
]
|
163 |
|
164 |
-
#
|
165 |
res_json = {
|
166 |
-
"
|
167 |
-
"
|
168 |
-
"
|
169 |
-
"
|
170 |
-
"Token–Symbolic Role Alignment": role_trace
|
171 |
}
|
172 |
|
173 |
-
return json.dumps(res_json, indent=2), f"{
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
|
178 |
|
179 |
# ------------------------------------------------------------------
|
|
|
87 |
def encode_and_trace(text, selected_roles):
|
88 |
if not selected_roles:
|
89 |
selected_roles = SYMBOLIC_ROLES
|
90 |
+
|
91 |
+
# Convert symbolic role tokens to IDs
|
92 |
sel_ids = [tokenizer.convert_tokens_to_ids(t) for t in selected_roles]
|
93 |
+
sel_ids_tensor = torch.tensor(sel_ids, device="cuda").unsqueeze(0) # shape: (1, R)
|
94 |
|
95 |
+
# Tokenize user prompt
|
96 |
batch = tokenizer(text, return_tensors="pt").to("cuda")
|
97 |
+
input_ids, attention_mask = batch.input_ids, batch.attention_mask
|
98 |
+
S = input_ids.shape[1]
|
99 |
|
100 |
+
# === Shared encoder logic with RoPE ===
|
101 |
def encode(input_ids, attn_mask):
|
102 |
+
x = embeddings(input_ids) # (B, S, H)
|
103 |
if emb_ln: x = emb_ln(x)
|
104 |
if emb_drop: x = emb_drop(x)
|
105 |
+
ext = full_model.bert.get_extended_attention_mask(attn_mask, input_ids.shape)
|
106 |
+
return encoder(x, attention_mask=ext)[0] # (B, S, H)
|
107 |
+
|
108 |
+
# Encode prompt
|
109 |
+
encoded_prompt = encode(input_ids, attention_mask)[0] # (S, H)
|
110 |
+
|
111 |
+
# Encode symbolic roles through same pipeline
|
112 |
+
symbolic_attn = torch.ones_like(sel_ids_tensor)
|
113 |
+
encoded_roles = encode(sel_ids_tensor, symbolic_attn)[0] # (R, H)
|
114 |
+
|
115 |
+
# === Symbolic classification via cosine similarity ===
|
116 |
+
# Compare each token to each symbolic role → shape: (S, R)
|
117 |
+
token_exp = encoded_prompt.unsqueeze(1).expand(-1, encoded_roles.size(0), -1) # (S, R, H)
|
118 |
+
role_exp = encoded_roles.unsqueeze(0).expand(encoded_prompt.size(0), -1, -1) # (S, R, H)
|
119 |
+
sim = F.cosine_similarity(token_exp, role_exp, dim=-1) # → (S, R)
|
120 |
+
|
121 |
+
argmax_ids = sim.argmax(dim=-1) # (S,)
|
122 |
+
max_scores = sim.max(dim=-1).values # (S,)
|
123 |
+
predicted_roles = [selected_roles[i] for i in argmax_ids.tolist()]
|
124 |
+
decoded_tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
125 |
+
|
126 |
+
# === Build readable trace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
role_trace = [
|
128 |
+
f"{tok:<15} → {role:<22} score={score:.4f}"
|
129 |
+
for tok, role, score in zip(decoded_tokens, predicted_roles, max_scores.tolist())
|
130 |
]
|
131 |
|
132 |
+
# === Final output
|
133 |
res_json = {
|
134 |
+
"Prompt": text,
|
135 |
+
"Predicted symbolic roles": predicted_roles,
|
136 |
+
"Max alignment score": f"{max_scores.max().item():.4f}",
|
137 |
+
"Per-token classification": role_trace
|
|
|
138 |
}
|
139 |
|
140 |
+
return json.dumps(res_json, indent=2), f"{max_scores.max().item():.4f}", len(selected_roles)
|
|
|
|
|
|
|
141 |
|
142 |
|
143 |
# ------------------------------------------------------------------
|