Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from transformers import AutoTokenizer, AutoModelForMaskedLM | |
from pathlib import Path | |
import json | |
import re | |
import gc | |
class BERTHandler: | |
""" | |
VRAM-safe BERT model handler for loading, tokenization, and saving | |
Handles all token management and checkpoint operations with proper cleanup | |
""" | |
def __init__(self, symbolic_tokens=None): | |
# Default symbolic tokens | |
self.symbolic_tokens = symbolic_tokens or [ | |
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>", | |
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>", | |
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>", | |
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>", | |
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>", | |
"<fabric>", "<jewelry>" | |
] | |
# Generate shunt tokens | |
self.shunt_tokens = [f"[SHUNT_{1000000 + i}]" for i in range(len(self.symbolic_tokens))] | |
self.all_special_tokens = self.symbolic_tokens + self.shunt_tokens | |
# Model components | |
self.tokenizer = None | |
self.model = None | |
self.current_step = 0 | |
self.current_epoch = 1 | |
print(f"π― BERTHandler initialized with {len(self.all_special_tokens)} special tokens") | |
def __del__(self): | |
"""Destructor to ensure cleanup when object is deleted""" | |
try: | |
self._cleanup_model() | |
except Exception: | |
# Ignore cleanup errors during shutdown | |
pass | |
def _cleanup_model(self): | |
""" | |
CRITICAL: Comprehensive model cleanup to free VRAM | |
This is the core method that prevents VRAM accumulation | |
""" | |
if hasattr(self, 'model') and self.model is not None: | |
print("π§Ή Cleaning up existing model from VRAM...") | |
# Check if torch is still available (can be None during shutdown) | |
try: | |
import torch as torch_module | |
if torch_module is None: | |
return | |
except (ImportError, AttributeError): | |
return | |
# Move model to CPU first to free GPU memory | |
try: | |
if torch_module.cuda.is_available() and next(self.model.parameters(), None) is not None: | |
if next(self.model.parameters()).is_cuda: | |
self.model = self.model.cpu() | |
except Exception: | |
# Continue cleanup even if moving to CPU fails | |
pass | |
# Delete the model | |
try: | |
del self.model | |
self.model = None | |
except Exception: | |
pass | |
# Force garbage collection | |
try: | |
gc.collect() | |
except Exception: | |
pass | |
# Clear CUDA cache | |
try: | |
if torch_module.cuda.is_available(): | |
torch_module.cuda.empty_cache() | |
torch_module.cuda.synchronize() # Ensure all CUDA operations complete | |
except Exception: | |
pass | |
print("β Model cleanup complete") | |
def _print_vram_usage(self, prefix=""): | |
"""Print current VRAM usage for monitoring""" | |
try: | |
if torch.cuda.is_available(): | |
allocated = torch.cuda.memory_allocated() / 1e9 | |
reserved = torch.cuda.memory_reserved() / 1e9 | |
print(f"π― {prefix}VRAM: {allocated:.2f}GB allocated, {reserved:.2f}GB reserved") | |
else: | |
print(f"π― {prefix}CUDA not available") | |
except Exception: | |
print(f"π― {prefix}VRAM: Could not read CUDA memory") | |
def load_fresh_model(self, model_name="nomic-ai/nomic-bert-2048"): | |
"""Load fresh model and add special tokens with proper VRAM management""" | |
print(f"π Loading fresh model: {model_name}") | |
self._print_vram_usage("Before cleanup: ") | |
# CRITICAL: Clean up existing model first | |
self._cleanup_model() | |
self._print_vram_usage("After cleanup: ") | |
try: | |
# Load base model and tokenizer | |
print("π₯ Loading base tokenizer...") | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
print("π₯ Loading base model...") | |
self.model = AutoModelForMaskedLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
torch_dtype=torch.float32 # Explicit dtype for consistency | |
) | |
# Add special tokens (ONLY for fresh models) | |
original_size = len(self.tokenizer) | |
special_tokens_dict = {"additional_special_tokens": self.all_special_tokens} | |
num_added = self.tokenizer.add_special_tokens(special_tokens_dict) | |
print(f" - Original vocab size: {original_size}") | |
print(f" - Added {num_added} special tokens") | |
print(f" - New vocab size: {len(self.tokenizer)}") | |
# Resize model embeddings (ONLY for fresh models) | |
if num_added > 0: | |
self._resize_embeddings() | |
# Reset training state | |
self.current_step = 0 | |
self.current_epoch = 1 | |
print("β Fresh model loaded successfully") | |
self._print_vram_usage("After loading: ") | |
return self.model, self.tokenizer | |
except Exception as e: | |
print(f"β Failed to load fresh model: {e}") | |
# Clean up on failure | |
self._cleanup_model() | |
raise | |
def load_checkpoint(self, checkpoint_path): | |
"""Load model from checkpoint - use saved tokenizer as-is, no modifications""" | |
print(f"π Loading checkpoint: {checkpoint_path}") | |
self._print_vram_usage("Before cleanup: ") | |
# CRITICAL: Clean up existing model first | |
self._cleanup_model() | |
self._print_vram_usage("After cleanup: ") | |
try: | |
# Load saved tokenizer AS-IS (already contains special tokens) | |
print("π₯ Loading saved tokenizer...") | |
self.tokenizer = AutoTokenizer.from_pretrained(checkpoint_path) | |
print(f" - Tokenizer loaded: {len(self.tokenizer)} tokens (already includes special tokens)") | |
# Load saved model AS-IS (already matches tokenizer) | |
print("π₯ Loading saved model...") | |
self.model = AutoModelForMaskedLM.from_pretrained( | |
checkpoint_path, | |
trust_remote_code=True, | |
torch_dtype=torch.float32, | |
) | |
print(f"β Model loaded successfully") | |
print(f" - Model vocab size: {self.model.config.vocab_size}") | |
print(f" - Embedding size: {self.model.bert.embeddings.word_embeddings.weight.shape[0]}") | |
print(f" - Tokenizer size: {len(self.tokenizer)}") | |
# Check for vocab size mismatch and warn (but don't auto-fix for checkpoints) | |
tokenizer_size = len(self.tokenizer) | |
model_vocab_size = self.model.config.vocab_size | |
embedding_size = self.model.bert.embeddings.word_embeddings.weight.shape[0] | |
if not (tokenizer_size == model_vocab_size == embedding_size): | |
print(f"β οΈ VOCAB SIZE MISMATCH DETECTED:") | |
print(f" - Tokenizer size: {tokenizer_size}") | |
print(f" - Model config vocab_size: {model_vocab_size}") | |
print(f" - Embedding size: {embedding_size}") | |
print(f" This might affect inference quality.") | |
# Load training state | |
self._load_training_state(checkpoint_path) | |
print(f"β Checkpoint loaded - Step: {self.current_step}, Epoch: {self.current_epoch}") | |
self._print_vram_usage("After loading: ") | |
return self.model, self.tokenizer | |
except Exception as e: | |
print(f"β Failed to load checkpoint: {e}") | |
# Clean up on failure | |
self._cleanup_model() | |
raise | |
def save_checkpoint(self, save_path, step=None, epoch=None): | |
"""Save model checkpoint with consistency verification""" | |
if self.model is None or self.tokenizer is None: | |
raise RuntimeError("No model loaded to save") | |
step = step or self.current_step | |
epoch = epoch or self.current_epoch | |
# CRITICAL: Verify consistency before saving | |
tokenizer_size = len(self.tokenizer) | |
model_vocab_size = self.model.config.vocab_size | |
embedding_size = self.model.bert.embeddings.word_embeddings.weight.shape[0] | |
if not (tokenizer_size == model_vocab_size == embedding_size): | |
print(f"β οΈ CONSISTENCY CHECK FAILED before saving:") | |
print(f" - Tokenizer size: {tokenizer_size}") | |
print(f" - Model config vocab_size: {model_vocab_size}") | |
print(f" - Embedding size: {embedding_size}") | |
# Force consistency before saving | |
print(f"π§ Forcing consistency to tokenizer size: {tokenizer_size}") | |
self.model.config.vocab_size = tokenizer_size | |
# Resize embeddings if needed | |
if embedding_size != tokenizer_size: | |
print(f"π§ Resizing embeddings to match tokenizer: {embedding_size} β {tokenizer_size}") | |
self._resize_embeddings() | |
# Create checkpoint directory | |
checkpoint_dir = Path(save_path) / f"symbolic_bert_step{step}_epoch{epoch}" | |
checkpoint_dir.mkdir(parents=True, exist_ok=True) | |
print(f"πΎ Saving checkpoint: {checkpoint_dir}") | |
try: | |
# Save model and tokenizer | |
print("πΎ Saving model...") | |
self.model.save_pretrained(checkpoint_dir) | |
print("πΎ Saving tokenizer...") | |
self.tokenizer.save_pretrained(checkpoint_dir) | |
# Save training state with consistency info | |
training_state = { | |
"step": step, | |
"epoch": epoch, | |
"vocab_size": len(self.tokenizer), | |
"model_vocab_size": self.model.config.vocab_size, | |
"embedding_size": self.model.bert.embeddings.word_embeddings.weight.shape[0], | |
"consistency_verified": True, | |
"special_tokens_count": len(self.all_special_tokens) | |
} | |
with open(checkpoint_dir / "training_config.json", "w") as f: | |
json.dump(training_state, f, indent=2) | |
# Save token mappings | |
self._save_token_mappings(checkpoint_dir) | |
# VERIFICATION: Load and check consistency | |
print("π Verifying saved checkpoint consistency...") | |
test_tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir) | |
test_config_path = checkpoint_dir / "config.json" | |
with open(test_config_path) as f: | |
test_config = json.load(f) | |
saved_tokenizer_size = len(test_tokenizer) | |
saved_model_vocab = test_config["vocab_size"] | |
if saved_tokenizer_size != saved_model_vocab: | |
raise RuntimeError( | |
f"CHECKPOINT SAVE FAILED! Inconsistency detected:\n" | |
f" Saved tokenizer size: {saved_tokenizer_size}\n" | |
f" Saved model vocab: {saved_model_vocab}" | |
) | |
# Update internal state | |
self.current_step = step | |
self.current_epoch = epoch | |
print(f"β Checkpoint saved and verified successfully") | |
print(f" - Consistent vocab size: {saved_tokenizer_size}") | |
return checkpoint_dir | |
except Exception as e: | |
print(f"β Failed to save checkpoint: {e}") | |
raise | |
def find_latest_checkpoint(self, base_path, pattern="symbolic_bert"): | |
"""Find latest checkpoint in directory""" | |
path = Path(base_path) | |
if not path.exists(): | |
print(f"β οΈ Checkpoint directory does not exist: {base_path}") | |
return None | |
# Find checkpoints | |
checkpoints = list(path.glob(f"{pattern}_step*_epoch*")) | |
if not checkpoints: | |
print(f"β οΈ No checkpoints found in {base_path}") | |
return None | |
# Sort by step number (more reliable than modification time) | |
def extract_step(checkpoint_path): | |
match = re.search(r"step(\d+)", checkpoint_path.name) | |
return int(match.group(1)) if match else 0 | |
checkpoints.sort(key=extract_step, reverse=True) | |
latest = checkpoints[0] | |
print(f"π Found latest checkpoint: {latest}") | |
return latest | |
def get_token_mappings(self): | |
"""Get token ID mappings""" | |
if self.tokenizer is None: | |
return {}, {} | |
symbolic_ids = {} | |
shunt_ids = {} | |
for token in self.symbolic_tokens: | |
token_id = self.tokenizer.convert_tokens_to_ids(token) | |
if token_id != self.tokenizer.unk_token_id: | |
symbolic_ids[token] = token_id | |
for token in self.shunt_tokens: | |
token_id = self.tokenizer.convert_tokens_to_ids(token) | |
if token_id != self.tokenizer.unk_token_id: | |
shunt_ids[token] = token_id | |
return symbolic_ids, shunt_ids | |
def to_device(self, device): | |
"""Move model to device with VRAM monitoring""" | |
if self.model is not None: | |
print(f"π± Moving model to {device}...") | |
self._print_vram_usage("Before device move: ") | |
self.model = self.model.to(device) | |
# Clear cache after moving to device | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
print(f"β Model moved to {device}") | |
self._print_vram_usage("After device move: ") | |
else: | |
print(f"β οΈ No model loaded to move to {device}") | |
return self | |
def _resize_embeddings(self): | |
"""Resize model embeddings to match tokenizer (handles both expansion and shrinking)""" | |
if self.model is None: | |
raise RuntimeError("No model loaded") | |
old_embeddings = self.model.bert.embeddings.word_embeddings | |
old_size, embedding_dim = old_embeddings.weight.shape | |
new_size = len(self.tokenizer) | |
if old_size == new_size: | |
print(f"β Embeddings already correct size: {new_size}") | |
return | |
print(f"π Resizing embeddings: {old_size} β {new_size}") | |
try: | |
# Create new embeddings | |
new_embeddings = nn.Embedding(new_size, embedding_dim) | |
# Copy existing embeddings (handle both expansion and shrinking) | |
with torch.no_grad(): | |
# Copy the minimum of old_size and new_size | |
copy_size = min(old_size, new_size) | |
new_embeddings.weight.data[:copy_size] = old_embeddings.weight.data[:copy_size].clone() | |
# If expanding, initialize new token embeddings | |
if new_size > old_size: | |
num_added = new_size - old_size | |
# Use small random initialization for new tokens | |
new_embeddings.weight.data[old_size:] = torch.randn( | |
num_added, embedding_dim, device=old_embeddings.weight.device | |
) * 0.02 | |
print(f" - Added {num_added} new token embeddings") | |
elif new_size < old_size: | |
num_removed = old_size - new_size | |
print(f" - Removed {num_removed} token embeddings") | |
# Replace embeddings | |
self.model.bert.embeddings.word_embeddings = new_embeddings | |
# Resize decoder if it exists | |
if hasattr(self.model.cls.predictions, "decoder"): | |
old_decoder = self.model.cls.predictions.decoder | |
new_decoder = nn.Linear(embedding_dim, new_size, bias=True) | |
with torch.no_grad(): | |
# Copy existing weights (handle both expansion and shrinking) | |
copy_size = min(old_decoder.weight.shape[0], new_size) | |
new_decoder.weight.data[:copy_size] = old_decoder.weight.data[:copy_size].clone() | |
# Handle bias | |
if old_decoder.bias is not None: | |
new_decoder.bias.data[:copy_size] = old_decoder.bias.data[:copy_size].clone() | |
# If expanding, tie new decoder weights to new embeddings and init bias | |
if new_size > old_decoder.weight.shape[0]: | |
start_idx = old_decoder.weight.shape[0] | |
new_decoder.weight.data[start_idx:] = new_embeddings.weight.data[start_idx:].clone() | |
if old_decoder.bias is not None: | |
new_decoder.bias.data[start_idx:] = torch.zeros( | |
new_size - start_idx, device=old_decoder.bias.device | |
) | |
self.model.cls.predictions.decoder = new_decoder | |
# Update config | |
self.model.config.vocab_size = new_size | |
print(f"β Embeddings resized successfully") | |
except Exception as e: | |
print(f"β Failed to resize embeddings: {e}") | |
raise | |
def _load_training_state(self, checkpoint_path): | |
"""Load training state from checkpoint""" | |
# Try training_config.json first | |
config_path = Path(checkpoint_path) / "training_config.json" | |
if config_path.exists(): | |
try: | |
with open(config_path) as f: | |
config = json.load(f) | |
self.current_step = config.get("step", 0) | |
self.current_epoch = config.get("epoch", 1) | |
print(f"π Loaded training state: step {self.current_step}, epoch {self.current_epoch}") | |
return | |
except Exception as e: | |
print(f"β οΈ Failed to load training_config.json: {e}") | |
# Fallback: extract from path name | |
match = re.search(r"step(\d+)_epoch(\d+)", str(checkpoint_path)) | |
if match: | |
self.current_step = int(match.group(1)) | |
self.current_epoch = int(match.group(2)) | |
print(f"π Extracted training state from path: step {self.current_step}, epoch {self.current_epoch}") | |
else: | |
self.current_step = 0 | |
self.current_epoch = 1 | |
print(f"β οΈ Could not determine training state, using defaults: step 0, epoch 1") | |
def _save_token_mappings(self, checkpoint_dir): | |
"""Save token ID mappings""" | |
try: | |
symbolic_ids, shunt_ids = self.get_token_mappings() | |
token_mappings = { | |
"symbolic_token_ids": symbolic_ids, | |
"shunt_token_ids": shunt_ids, | |
"symbolic_tokens": self.symbolic_tokens, | |
"shunt_tokens": self.shunt_tokens, | |
"total_special_tokens": len(self.all_special_tokens) | |
} | |
with open(checkpoint_dir / "special_token_ids.json", "w") as f: | |
json.dump(token_mappings, f, indent=2) | |
print(f"πΎ Saved {len(symbolic_ids)} symbolic and {len(shunt_ids)} shunt token mappings") | |
except Exception as e: | |
print(f"β οΈ Failed to save token mappings: {e}") | |
def summary(self): | |
"""Print comprehensive handler summary""" | |
print(f"\nπ BERT HANDLER SUMMARY:") | |
if self.model is None: | |
print("β No model loaded") | |
return | |
symbolic_ids, shunt_ids = self.get_token_mappings() | |
print(f" π Tokenizer:") | |
print(f" - Size: {len(self.tokenizer)}") | |
print(f" - Special tokens: {len(self.tokenizer.additional_special_tokens or [])}") | |
print(f" π€ Model:") | |
print(f" - Config vocab size: {self.model.config.vocab_size}") | |
print(f" - Embedding vocab size: {self.model.bert.embeddings.word_embeddings.weight.shape[0]}") | |
print(f" - Embedding dim: {self.model.bert.embeddings.word_embeddings.weight.shape[1]}") | |
if hasattr(self.model.cls.predictions, "decoder"): | |
decoder = self.model.cls.predictions.decoder | |
print(f" - Decoder output size: {decoder.weight.shape[0]}") | |
print(f" π― Special Tokens:") | |
print(f" - Symbolic tokens mapped: {len(symbolic_ids)}") | |
print(f" - Shunt tokens mapped: {len(shunt_ids)}") | |
print(f" - Total defined: {len(self.all_special_tokens)}") | |
print(f" π Training State:") | |
print(f" - Current step: {self.current_step}") | |
print(f" - Current epoch: {self.current_epoch}") | |
# VRAM usage | |
self._print_vram_usage(" π― ") | |
# Check for vocab consistency | |
tokenizer_size = len(self.tokenizer) | |
model_config_size = self.model.config.vocab_size | |
embedding_size = self.model.bert.embeddings.word_embeddings.weight.shape[0] | |
if tokenizer_size == model_config_size == embedding_size: | |
print(f" β All vocab sizes consistent: {tokenizer_size}") | |
else: | |
print(f" β οΈ Vocab size mismatch detected:") | |
print(f" - Tokenizer: {tokenizer_size}") | |
print(f" - Model config: {model_config_size}") | |
print(f" - Embeddings: {embedding_size}") | |
def clear_vram(self): | |
"""Explicit method to clear VRAM for debugging""" | |
print("π§Ή Explicit VRAM cleanup requested...") | |
self._cleanup_model() | |
self._print_vram_usage("After cleanup: ") | |
# Utility functions for safe usage patterns | |
def create_handler_with_fresh_model(model_name="nomic-ai/nomic-bert-2048", symbolic_tokens=None): | |
"""Factory function to create handler and load fresh model safely""" | |
print("π Creating new BERTHandler with fresh model...") | |
handler = BERTHandler(symbolic_tokens=symbolic_tokens) | |
model, tokenizer = handler.load_fresh_model(model_name) | |
return handler, model, tokenizer | |
def create_handler_from_checkpoint(checkpoint_path, symbolic_tokens=None): | |
"""Factory function to create handler and load from checkpoint safely""" | |
print("π Creating new BERTHandler from checkpoint...") | |
handler = BERTHandler(symbolic_tokens=symbolic_tokens) | |
model, tokenizer = handler.load_checkpoint(checkpoint_path) | |
return handler, model, tokenizer | |
# Usage examples and testing | |
if __name__ == "__main__": | |
# Example usage with comprehensive error handling | |
def test_vram_safety(): | |
"""Test VRAM safety by loading multiple models""" | |
print("π§ͺ Testing VRAM safety...") | |
handler = BERTHandler() | |
# Load model 1 | |
print("\n--- Loading Model 1 ---") | |
handler.load_fresh_model("bert-base-uncased") | |
handler.summary() | |
# Load model 2 (should clean up model 1) | |
print("\n--- Loading Model 2 (should cleanup Model 1) ---") | |
handler.load_fresh_model("distilbert-base-uncased") | |
handler.summary() | |
# Explicit cleanup | |
print("\n--- Explicit Cleanup ---") | |
handler.clear_vram() | |
print("β VRAM safety test complete") | |
# Uncomment to run test | |
# test_vram_safety() | |
""" | |
USAGE EXAMPLES: | |
# Safe way to work with fresh models: | |
handler, model, tokenizer = create_handler_with_fresh_model("nomic-ai/nomic-bert-2048") | |
# Safe way to work with checkpoints: | |
handler, model, tokenizer = create_handler_from_checkpoint("/path/to/checkpoint") | |
# Manual cleanup when needed: | |
handler.clear_vram() | |
# Always check summary for consistency: | |
handler.summary() | |
""" |