File size: 24,892 Bytes
c71cf49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711144
 
 
 
 
c71cf49
 
 
 
 
 
 
 
 
1711144
 
 
 
 
 
 
 
c71cf49
1711144
 
 
 
 
 
 
c71cf49
 
1711144
 
 
 
 
c71cf49
 
1711144
 
 
 
c71cf49
 
1711144
 
 
 
 
 
c71cf49
 
 
 
 
1711144
 
 
 
 
 
 
 
 
c71cf49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711144
 
 
 
 
 
 
 
 
 
 
c71cf49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForMaskedLM
from pathlib import Path
import json
import re
import gc


class BERTHandler:
    """
    VRAM-safe BERT model handler for loading, tokenization, and saving
    Handles all token management and checkpoint operations with proper cleanup
    """
    
    def __init__(self, symbolic_tokens=None):
        # Default symbolic tokens
        self.symbolic_tokens = symbolic_tokens or [
            "<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>", 
            "<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>", 
            "<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>", 
            "<texture>", "<pattern>", "<grid>", "<zone>", "<offset>", 
            "<object_left>", "<object_right>", "<relation>", "<intent>", "<style>", 
            "<fabric>", "<jewelry>"
        ]
        
        # Generate shunt tokens
        self.shunt_tokens = [f"[SHUNT_{1000000 + i}]" for i in range(len(self.symbolic_tokens))]
        self.all_special_tokens = self.symbolic_tokens + self.shunt_tokens
        
        # Model components
        self.tokenizer = None
        self.model = None
        self.current_step = 0
        self.current_epoch = 1
        
        print(f"🎯 BERTHandler initialized with {len(self.all_special_tokens)} special tokens")
    
    def __del__(self):
        """Destructor to ensure cleanup when object is deleted"""
        try:
            self._cleanup_model()
        except Exception:
            # Ignore cleanup errors during shutdown
            pass
    
    def _cleanup_model(self):
        """
        CRITICAL: Comprehensive model cleanup to free VRAM
        This is the core method that prevents VRAM accumulation
        """
        if hasattr(self, 'model') and self.model is not None:
            print("🧹 Cleaning up existing model from VRAM...")
            
            # Check if torch is still available (can be None during shutdown)
            try:
                import torch as torch_module
                if torch_module is None:
                    return
            except (ImportError, AttributeError):
                return
            
            # Move model to CPU first to free GPU memory
            try:
                if torch_module.cuda.is_available() and next(self.model.parameters(), None) is not None:
                    if next(self.model.parameters()).is_cuda:
                        self.model = self.model.cpu()
            except Exception:
                # Continue cleanup even if moving to CPU fails
                pass
            
            # Delete the model
            try:
                del self.model
                self.model = None
            except Exception:
                pass
            
            # Force garbage collection
            try:
                gc.collect()
            except Exception:
                pass
            
            # Clear CUDA cache
            try:
                if torch_module.cuda.is_available():
                    torch_module.cuda.empty_cache()
                    torch_module.cuda.synchronize()  # Ensure all CUDA operations complete
            except Exception:
                pass
            
            print("βœ… Model cleanup complete")
    
    def _print_vram_usage(self, prefix=""):
        """Print current VRAM usage for monitoring"""
        try:
            if torch.cuda.is_available():
                allocated = torch.cuda.memory_allocated() / 1e9
                reserved = torch.cuda.memory_reserved() / 1e9
                print(f"🎯 {prefix}VRAM: {allocated:.2f}GB allocated, {reserved:.2f}GB reserved")
            else:
                print(f"🎯 {prefix}CUDA not available")
        except Exception:
            print(f"🎯 {prefix}VRAM: Could not read CUDA memory")
    
    def load_fresh_model(self, model_name="nomic-ai/nomic-bert-2048"):
        """Load fresh model and add special tokens with proper VRAM management"""
        print(f"πŸ†• Loading fresh model: {model_name}")
        self._print_vram_usage("Before cleanup: ")
        
        # CRITICAL: Clean up existing model first
        self._cleanup_model()
        self._print_vram_usage("After cleanup: ")
        
        try:
            # Load base model and tokenizer
            print("πŸ“₯ Loading base tokenizer...")
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            
            print("πŸ“₯ Loading base model...")
            self.model = AutoModelForMaskedLM.from_pretrained(
                model_name, 
                trust_remote_code=True,
                torch_dtype=torch.float32  # Explicit dtype for consistency
            )
            
            # Add special tokens (ONLY for fresh models)
            original_size = len(self.tokenizer)
            special_tokens_dict = {"additional_special_tokens": self.all_special_tokens}
            num_added = self.tokenizer.add_special_tokens(special_tokens_dict)
            
            print(f"   - Original vocab size: {original_size}")
            print(f"   - Added {num_added} special tokens")
            print(f"   - New vocab size: {len(self.tokenizer)}")
            
            # Resize model embeddings (ONLY for fresh models)
            if num_added > 0:
                self._resize_embeddings()
            
            # Reset training state
            self.current_step = 0
            self.current_epoch = 1
            
            print("βœ… Fresh model loaded successfully")
            self._print_vram_usage("After loading: ")
            return self.model, self.tokenizer
            
        except Exception as e:
            print(f"❌ Failed to load fresh model: {e}")
            # Clean up on failure
            self._cleanup_model()
            raise

    def load_checkpoint(self, checkpoint_path):
        """Load model from checkpoint - use saved tokenizer as-is, no modifications"""
        print(f"πŸ“‚ Loading checkpoint: {checkpoint_path}")
        self._print_vram_usage("Before cleanup: ")
        
        # CRITICAL: Clean up existing model first
        self._cleanup_model()
        self._print_vram_usage("After cleanup: ")
        
        try:
            # Load saved tokenizer AS-IS (already contains special tokens)
            print("πŸ“₯ Loading saved tokenizer...")
            self.tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
            print(f"   - Tokenizer loaded: {len(self.tokenizer)} tokens (already includes special tokens)")
            
            # Load saved model AS-IS (already matches tokenizer)
            print("πŸ“₯ Loading saved model...")
            self.model = AutoModelForMaskedLM.from_pretrained(
                checkpoint_path, 
                trust_remote_code=True,
                torch_dtype=torch.float32,
            )
            
            print(f"βœ… Model loaded successfully")
            print(f"   - Model vocab size: {self.model.config.vocab_size}")
            print(f"   - Embedding size: {self.model.bert.embeddings.word_embeddings.weight.shape[0]}")
            print(f"   - Tokenizer size: {len(self.tokenizer)}")
            
            # Check for vocab size mismatch and warn (but don't auto-fix for checkpoints)
            tokenizer_size = len(self.tokenizer)
            model_vocab_size = self.model.config.vocab_size
            embedding_size = self.model.bert.embeddings.word_embeddings.weight.shape[0]
            
            if not (tokenizer_size == model_vocab_size == embedding_size):
                print(f"⚠️  VOCAB SIZE MISMATCH DETECTED:")
                print(f"   - Tokenizer size: {tokenizer_size}")
                print(f"   - Model config vocab_size: {model_vocab_size}")
                print(f"   - Embedding size: {embedding_size}")
                print(f"   This might affect inference quality.")
            
            # Load training state
            self._load_training_state(checkpoint_path)
            
            print(f"βœ… Checkpoint loaded - Step: {self.current_step}, Epoch: {self.current_epoch}")
            self._print_vram_usage("After loading: ")
            return self.model, self.tokenizer
            
        except Exception as e:
            print(f"❌ Failed to load checkpoint: {e}")
            # Clean up on failure
            self._cleanup_model()
            raise
      
    def save_checkpoint(self, save_path, step=None, epoch=None):
        """Save model checkpoint with consistency verification"""
        if self.model is None or self.tokenizer is None:
            raise RuntimeError("No model loaded to save")
        
        step = step or self.current_step
        epoch = epoch or self.current_epoch
        
        # CRITICAL: Verify consistency before saving
        tokenizer_size = len(self.tokenizer)
        model_vocab_size = self.model.config.vocab_size
        embedding_size = self.model.bert.embeddings.word_embeddings.weight.shape[0]
        
        if not (tokenizer_size == model_vocab_size == embedding_size):
            print(f"⚠️  CONSISTENCY CHECK FAILED before saving:")
            print(f"   - Tokenizer size: {tokenizer_size}")
            print(f"   - Model config vocab_size: {model_vocab_size}")
            print(f"   - Embedding size: {embedding_size}")
            
            # Force consistency before saving
            print(f"πŸ”§ Forcing consistency to tokenizer size: {tokenizer_size}")
            self.model.config.vocab_size = tokenizer_size
            
            # Resize embeddings if needed
            if embedding_size != tokenizer_size:
                print(f"πŸ”§ Resizing embeddings to match tokenizer: {embedding_size} β†’ {tokenizer_size}")
                self._resize_embeddings()
        
        # Create checkpoint directory
        checkpoint_dir = Path(save_path) / f"symbolic_bert_step{step}_epoch{epoch}"
        checkpoint_dir.mkdir(parents=True, exist_ok=True)
        
        print(f"πŸ’Ύ Saving checkpoint: {checkpoint_dir}")
        
        try:
            # Save model and tokenizer
            print("πŸ’Ύ Saving model...")
            self.model.save_pretrained(checkpoint_dir)
            
            print("πŸ’Ύ Saving tokenizer...")
            self.tokenizer.save_pretrained(checkpoint_dir)
            
            # Save training state with consistency info
            training_state = {
                "step": step,
                "epoch": epoch,
                "vocab_size": len(self.tokenizer),
                "model_vocab_size": self.model.config.vocab_size,
                "embedding_size": self.model.bert.embeddings.word_embeddings.weight.shape[0],
                "consistency_verified": True,
                "special_tokens_count": len(self.all_special_tokens)
            }
            
            with open(checkpoint_dir / "training_config.json", "w") as f:
                json.dump(training_state, f, indent=2)
            
            # Save token mappings
            self._save_token_mappings(checkpoint_dir)
            
            # VERIFICATION: Load and check consistency
            print("πŸ” Verifying saved checkpoint consistency...")
            test_tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir)
            test_config_path = checkpoint_dir / "config.json"
            
            with open(test_config_path) as f:
                test_config = json.load(f)
            
            saved_tokenizer_size = len(test_tokenizer)
            saved_model_vocab = test_config["vocab_size"]
            
            if saved_tokenizer_size != saved_model_vocab:
                raise RuntimeError(
                    f"CHECKPOINT SAVE FAILED! Inconsistency detected:\n"
                    f"  Saved tokenizer size: {saved_tokenizer_size}\n" 
                    f"  Saved model vocab: {saved_model_vocab}"
                )
            
            # Update internal state
            self.current_step = step
            self.current_epoch = epoch
            
            print(f"βœ… Checkpoint saved and verified successfully")
            print(f"   - Consistent vocab size: {saved_tokenizer_size}")
            return checkpoint_dir
            
        except Exception as e:
            print(f"❌ Failed to save checkpoint: {e}")
            raise
    
    def find_latest_checkpoint(self, base_path, pattern="symbolic_bert"):
        """Find latest checkpoint in directory"""
        path = Path(base_path)
        if not path.exists():
            print(f"⚠️  Checkpoint directory does not exist: {base_path}")
            return None
        
        # Find checkpoints
        checkpoints = list(path.glob(f"{pattern}_step*_epoch*"))
        if not checkpoints:
            print(f"⚠️  No checkpoints found in {base_path}")
            return None
        
        # Sort by step number (more reliable than modification time)
        def extract_step(checkpoint_path):
            match = re.search(r"step(\d+)", checkpoint_path.name)
            return int(match.group(1)) if match else 0
        
        checkpoints.sort(key=extract_step, reverse=True)
        latest = checkpoints[0]
        
        print(f"πŸ“‚ Found latest checkpoint: {latest}")
        return latest
    
    def get_token_mappings(self):
        """Get token ID mappings"""
        if self.tokenizer is None:
            return {}, {}
        
        symbolic_ids = {}
        shunt_ids = {}
        
        for token in self.symbolic_tokens:
            token_id = self.tokenizer.convert_tokens_to_ids(token)
            if token_id != self.tokenizer.unk_token_id:
                symbolic_ids[token] = token_id
        
        for token in self.shunt_tokens:
            token_id = self.tokenizer.convert_tokens_to_ids(token)
            if token_id != self.tokenizer.unk_token_id:
                shunt_ids[token] = token_id
        
        return symbolic_ids, shunt_ids
    
    def to_device(self, device):
        """Move model to device with VRAM monitoring"""
        if self.model is not None:
            print(f"πŸ“± Moving model to {device}...")
            self._print_vram_usage("Before device move: ")
            
            self.model = self.model.to(device)
            
            # Clear cache after moving to device
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            
            print(f"βœ… Model moved to {device}")
            self._print_vram_usage("After device move: ")
        else:
            print(f"⚠️  No model loaded to move to {device}")
        return self
    
    def _resize_embeddings(self):
        """Resize model embeddings to match tokenizer (handles both expansion and shrinking)"""
        if self.model is None:
            raise RuntimeError("No model loaded")
            
        old_embeddings = self.model.bert.embeddings.word_embeddings
        old_size, embedding_dim = old_embeddings.weight.shape
        new_size = len(self.tokenizer)
        
        if old_size == new_size:
            print(f"βœ… Embeddings already correct size: {new_size}")
            return
        
        print(f"πŸ”„ Resizing embeddings: {old_size} β†’ {new_size}")
        
        try:
            # Create new embeddings
            new_embeddings = nn.Embedding(new_size, embedding_dim)
            
            # Copy existing embeddings (handle both expansion and shrinking)
            with torch.no_grad():
                # Copy the minimum of old_size and new_size
                copy_size = min(old_size, new_size)
                new_embeddings.weight.data[:copy_size] = old_embeddings.weight.data[:copy_size].clone()
                
                # If expanding, initialize new token embeddings
                if new_size > old_size:
                    num_added = new_size - old_size
                    # Use small random initialization for new tokens
                    new_embeddings.weight.data[old_size:] = torch.randn(
                        num_added, embedding_dim, device=old_embeddings.weight.device
                    ) * 0.02
                    print(f"   - Added {num_added} new token embeddings")
                elif new_size < old_size:
                    num_removed = old_size - new_size
                    print(f"   - Removed {num_removed} token embeddings")
            
            # Replace embeddings
            self.model.bert.embeddings.word_embeddings = new_embeddings
            
            # Resize decoder if it exists
            if hasattr(self.model.cls.predictions, "decoder"):
                old_decoder = self.model.cls.predictions.decoder
                new_decoder = nn.Linear(embedding_dim, new_size, bias=True)
                
                with torch.no_grad():
                    # Copy existing weights (handle both expansion and shrinking)
                    copy_size = min(old_decoder.weight.shape[0], new_size)
                    new_decoder.weight.data[:copy_size] = old_decoder.weight.data[:copy_size].clone()
                    
                    # Handle bias
                    if old_decoder.bias is not None:
                        new_decoder.bias.data[:copy_size] = old_decoder.bias.data[:copy_size].clone()
                    
                    # If expanding, tie new decoder weights to new embeddings and init bias
                    if new_size > old_decoder.weight.shape[0]:
                        start_idx = old_decoder.weight.shape[0]
                        new_decoder.weight.data[start_idx:] = new_embeddings.weight.data[start_idx:].clone()
                        if old_decoder.bias is not None:
                            new_decoder.bias.data[start_idx:] = torch.zeros(
                                new_size - start_idx, device=old_decoder.bias.device
                            )
                
                self.model.cls.predictions.decoder = new_decoder
            
            # Update config
            self.model.config.vocab_size = new_size
            
            print(f"βœ… Embeddings resized successfully")
            
        except Exception as e:
            print(f"❌ Failed to resize embeddings: {e}")
            raise
    
    def _load_training_state(self, checkpoint_path):
        """Load training state from checkpoint"""
        # Try training_config.json first
        config_path = Path(checkpoint_path) / "training_config.json"
        if config_path.exists():
            try:
                with open(config_path) as f:
                    config = json.load(f)
                self.current_step = config.get("step", 0)
                self.current_epoch = config.get("epoch", 1)
                print(f"πŸ“Š Loaded training state: step {self.current_step}, epoch {self.current_epoch}")
                return
            except Exception as e:
                print(f"⚠️  Failed to load training_config.json: {e}")
        
        # Fallback: extract from path name
        match = re.search(r"step(\d+)_epoch(\d+)", str(checkpoint_path))
        if match:
            self.current_step = int(match.group(1))
            self.current_epoch = int(match.group(2))
            print(f"πŸ“Š Extracted training state from path: step {self.current_step}, epoch {self.current_epoch}")
        else:
            self.current_step = 0
            self.current_epoch = 1
            print(f"⚠️  Could not determine training state, using defaults: step 0, epoch 1")
    
    def _save_token_mappings(self, checkpoint_dir):
        """Save token ID mappings"""
        try:
            symbolic_ids, shunt_ids = self.get_token_mappings()
            
            token_mappings = {
                "symbolic_token_ids": symbolic_ids,
                "shunt_token_ids": shunt_ids,
                "symbolic_tokens": self.symbolic_tokens,
                "shunt_tokens": self.shunt_tokens,
                "total_special_tokens": len(self.all_special_tokens)
            }
            
            with open(checkpoint_dir / "special_token_ids.json", "w") as f:
                json.dump(token_mappings, f, indent=2)
                
            print(f"πŸ’Ύ Saved {len(symbolic_ids)} symbolic and {len(shunt_ids)} shunt token mappings")
            
        except Exception as e:
            print(f"⚠️  Failed to save token mappings: {e}")
    
    def summary(self):
        """Print comprehensive handler summary"""
        print(f"\nπŸ“‹ BERT HANDLER SUMMARY:")
        
        if self.model is None:
            print("❌ No model loaded")
            return
        
        symbolic_ids, shunt_ids = self.get_token_mappings()
        
        print(f"   πŸ“š Tokenizer:")
        print(f"     - Size: {len(self.tokenizer)}")
        print(f"     - Special tokens: {len(self.tokenizer.additional_special_tokens or [])}")
        
        print(f"   πŸ€– Model:")
        print(f"     - Config vocab size: {self.model.config.vocab_size}")
        print(f"     - Embedding vocab size: {self.model.bert.embeddings.word_embeddings.weight.shape[0]}")
        print(f"     - Embedding dim: {self.model.bert.embeddings.word_embeddings.weight.shape[1]}")
        
        if hasattr(self.model.cls.predictions, "decoder"):
            decoder = self.model.cls.predictions.decoder
            print(f"     - Decoder output size: {decoder.weight.shape[0]}")
        
        print(f"   🎯 Special Tokens:")
        print(f"     - Symbolic tokens mapped: {len(symbolic_ids)}")
        print(f"     - Shunt tokens mapped: {len(shunt_ids)}")
        print(f"     - Total defined: {len(self.all_special_tokens)}")
        
        print(f"   πŸ“Š Training State:")
        print(f"     - Current step: {self.current_step}")
        print(f"     - Current epoch: {self.current_epoch}")
        
        # VRAM usage
        self._print_vram_usage("   🎯 ")
        
        # Check for vocab consistency
        tokenizer_size = len(self.tokenizer)
        model_config_size = self.model.config.vocab_size
        embedding_size = self.model.bert.embeddings.word_embeddings.weight.shape[0]
        
        if tokenizer_size == model_config_size == embedding_size:
            print(f"   βœ… All vocab sizes consistent: {tokenizer_size}")
        else:
            print(f"   ⚠️  Vocab size mismatch detected:")
            print(f"     - Tokenizer: {tokenizer_size}")
            print(f"     - Model config: {model_config_size}")
            print(f"     - Embeddings: {embedding_size}")

    def clear_vram(self):
        """Explicit method to clear VRAM for debugging"""
        print("🧹 Explicit VRAM cleanup requested...")
        self._cleanup_model()
        self._print_vram_usage("After cleanup: ")


# Utility functions for safe usage patterns

def create_handler_with_fresh_model(model_name="nomic-ai/nomic-bert-2048", symbolic_tokens=None):
    """Factory function to create handler and load fresh model safely"""
    print("πŸ”„ Creating new BERTHandler with fresh model...")
    handler = BERTHandler(symbolic_tokens=symbolic_tokens)
    model, tokenizer = handler.load_fresh_model(model_name)
    return handler, model, tokenizer


def create_handler_from_checkpoint(checkpoint_path, symbolic_tokens=None):
    """Factory function to create handler and load from checkpoint safely"""
    print("πŸ”„ Creating new BERTHandler from checkpoint...")
    handler = BERTHandler(symbolic_tokens=symbolic_tokens)
    model, tokenizer = handler.load_checkpoint(checkpoint_path)
    return handler, model, tokenizer


# Usage examples and testing
if __name__ == "__main__":
    # Example usage with comprehensive error handling
    
    def test_vram_safety():
        """Test VRAM safety by loading multiple models"""
        print("πŸ§ͺ Testing VRAM safety...")
        
        handler = BERTHandler()
        
        # Load model 1
        print("\n--- Loading Model 1 ---")
        handler.load_fresh_model("bert-base-uncased")
        handler.summary()
        
        # Load model 2 (should clean up model 1)
        print("\n--- Loading Model 2 (should cleanup Model 1) ---")
        handler.load_fresh_model("distilbert-base-uncased")
        handler.summary()
        
        # Explicit cleanup
        print("\n--- Explicit Cleanup ---")
        handler.clear_vram()
        
        print("βœ… VRAM safety test complete")
    
    # Uncomment to run test
    # test_vram_safety()

"""
USAGE EXAMPLES:

# Safe way to work with fresh models:
handler, model, tokenizer = create_handler_with_fresh_model("nomic-ai/nomic-bert-2048")

# Safe way to work with checkpoints:
handler, model, tokenizer = create_handler_from_checkpoint("/path/to/checkpoint")

# Manual cleanup when needed:
handler.clear_vram()

# Always check summary for consistency:
handler.summary()
"""