AbstractPhil's picture
Update app.py
872b08b verified
raw
history blame
5.52 kB
# app.py – encoder-only demo for bert-beatrix-2048
# -----------------------------------------------
# launch: python app.py
# (gradio UI appears at http://localhost:7860)
import json
import re
import sys
from pathlib import Path, PurePosixPath # ← PurePosixPath import added
import gradio as gr
import spaces
import torch
from huggingface_hub import snapshot_download
from bert_handler import create_handler_from_checkpoint
# ------------------------------------------------------------------
# 0. Download & patch config.json --------------------------------
# ------------------------------------------------------------------
REPO_ID = "AbstractPhil/bert-beatrix-2048"
LOCAL_CKPT = "bert-beatrix-2048" # cached dir name
snapshot_download(
repo_id=REPO_ID,
revision="main",
local_dir=LOCAL_CKPT,
local_dir_use_symlinks=False,
)
# ── one-time patch: strip the β€œrepo--” prefix that confuses AutoModel ──
cfg_path = Path(LOCAL_CKPT) / "config.json"
with cfg_path.open() as f:
cfg = json.load(f)
auto_map = cfg.get("auto_map", {})
changed = False
for k, v in auto_map.items():
if "--" in v: # v looks like "repo--module.Class"
auto_map[k] = PurePosixPath(v.split("--", 1)[1]).as_posix()
changed = True
if changed:
cfg["auto_map"] = auto_map
with cfg_path.open("w") as f:
json.dump(cfg, f, indent=2)
print("πŸ› οΈ Patched config.json β†’ auto_map now points at local modules")
# ------------------------------------------------------------------
# 1. Model / tokenizer -------------------------------------------
# ------------------------------------------------------------------
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
full_model = full_model.eval().cuda()
# Grab encoder + embedding stack only
encoder = full_model.bert.encoder
embeddings = full_model.bert.embeddings
emb_ln = full_model.bert.emb_ln
emb_drop = full_model.bert.emb_drop
# ------------------------------------------------------------------
# 2. Symbolic token set ------------------------------------------
# ------------------------------------------------------------------
SYMBOLIC_ROLES = [
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
"<fabric>", "<jewelry>",
]
# quick sanity check
missing = [tok for tok in SYMBOLIC_ROLES
if tokenizer.convert_tokens_to_ids(tok) == tokenizer.unk_token_id]
if missing:
sys.exit(f"❌ Tokenizer is missing {missing}")
# ------------------------------------------------------------------
# 3. Encoder-only inference util ---------------------------------
# ------------------------------------------------------------------
@spaces.GPU
def encode_and_trace(text: str, selected_roles: list[str]):
with torch.no_grad():
batch = tokenizer(text, return_tensors="pt").to("cuda")
ids, mask = batch.input_ids, batch.attention_mask
x = emb_drop(emb_ln(embeddings(ids)))
ext_mask = full_model.bert.get_extended_attention_mask(mask, x.shape[:-1])
enc = encoder(x, attention_mask=ext_mask) # (1, S, H)
sel_ids = {tokenizer.convert_tokens_to_ids(t) for t in selected_roles}
flags = torch.tensor([tid in sel_ids for tid in ids[0].tolist()],
device=enc.device)
found = [tokenizer.convert_ids_to_tokens([tid])[0]
for tid in ids[0].tolist() if tid in sel_ids]
if flags.any():
vec = enc[0][flags].mean(0)
norm = f"{vec.norm().item():.4f}"
else:
norm = "0.0000"
return {
"Symbolic Tokens": ", ".join(found) or "(none)",
"Embedding Norm": norm,
"Symbolic Token Count": int(flags.sum().item()),
}
# ------------------------------------------------------------------
# 4. Gradio UI ----------------------------------------------------
# ------------------------------------------------------------------
def build_interface():
with gr.Blocks(title="🧠 Symbolic Encoder Inspector") as demo:
gr.Markdown(
"## 🧠 Symbolic Encoder Inspector\n"
"Paste some text containing the special `<role>` tokens and "
"inspect their encoder representations."
)
with gr.Row():
with gr.Column():
txt = gr.Textbox(
label="Input with Symbolic Tokens",
placeholder="Example: A <subject> wearing <upper_body_clothing> …",
lines=3,
)
roles = gr.CheckboxGroup(
choices=SYMBOLIC_ROLES,
label="Trace these symbolic roles",
)
btn = gr.Button("Encode & Trace")
with gr.Column():
out_tok = gr.Textbox(label="Symbolic Tokens Found")
out_norm = gr.Textbox(label="Mean Norm")
out_cnt = gr.Textbox(label="Token Count")
btn.click(encode_and_trace, [txt, roles], [out_tok, out_norm, out_cnt])
return demo
if __name__ == "__main__":
build_interface().launch()