File size: 5,517 Bytes
096fe3a 872b08b 81a0ae4 535151e 81a0ae4 872b08b 096fe3a 872b08b 535151e 096fe3a 872b08b 096fe3a 872b08b 81a0ae4 872b08b 9a08859 81a0ae4 872b08b 9a08859 872b08b 9a08859 872b08b 9a08859 872b08b 9a08859 872b08b 9a08859 872b08b 9a08859 81a0ae4 096fe3a 535151e 872b08b 096fe3a 8a2e372 872b08b 096fe3a 872b08b 096fe3a 785df91 872b08b 785df91 872b08b 096fe3a 872b08b 096fe3a 872b08b 096fe3a 81a0ae4 096fe3a 81a0ae4 096fe3a 81a0ae4 872b08b 096fe3a 872b08b 096fe3a 872b08b 81a0ae4 096fe3a 81a0ae4 096fe3a 81a0ae4 872b08b 096fe3a 872b08b 096fe3a 872b08b 096fe3a 785df91 096fe3a 872b08b 535151e 872b08b 81a0ae4 535151e 81a0ae4 872b08b 535151e ea2994b 872b08b ea2994b 81a0ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# app.py β encoder-only demo for bert-beatrix-2048
# -----------------------------------------------
# launch: python app.py
# (gradio UI appears at http://localhost:7860)
import json
import re
import sys
from pathlib import Path, PurePosixPath # β PurePosixPath import added
import gradio as gr
import spaces
import torch
from huggingface_hub import snapshot_download
from bert_handler import create_handler_from_checkpoint
# ------------------------------------------------------------------
# 0. Download & patch config.json --------------------------------
# ------------------------------------------------------------------
REPO_ID = "AbstractPhil/bert-beatrix-2048"
LOCAL_CKPT = "bert-beatrix-2048" # cached dir name
snapshot_download(
repo_id=REPO_ID,
revision="main",
local_dir=LOCAL_CKPT,
local_dir_use_symlinks=False,
)
# ββ one-time patch: strip the βrepo--β prefix that confuses AutoModel ββ
cfg_path = Path(LOCAL_CKPT) / "config.json"
with cfg_path.open() as f:
cfg = json.load(f)
auto_map = cfg.get("auto_map", {})
changed = False
for k, v in auto_map.items():
if "--" in v: # v looks like "repo--module.Class"
auto_map[k] = PurePosixPath(v.split("--", 1)[1]).as_posix()
changed = True
if changed:
cfg["auto_map"] = auto_map
with cfg_path.open("w") as f:
json.dump(cfg, f, indent=2)
print("π οΈ Patched config.json β auto_map now points at local modules")
# ------------------------------------------------------------------
# 1. Model / tokenizer -------------------------------------------
# ------------------------------------------------------------------
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
full_model = full_model.eval().cuda()
# Grab encoder + embedding stack only
encoder = full_model.bert.encoder
embeddings = full_model.bert.embeddings
emb_ln = full_model.bert.emb_ln
emb_drop = full_model.bert.emb_drop
# ------------------------------------------------------------------
# 2. Symbolic token set ------------------------------------------
# ------------------------------------------------------------------
SYMBOLIC_ROLES = [
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
"<fabric>", "<jewelry>",
]
# quick sanity check
missing = [tok for tok in SYMBOLIC_ROLES
if tokenizer.convert_tokens_to_ids(tok) == tokenizer.unk_token_id]
if missing:
sys.exit(f"β Tokenizer is missing {missing}")
# ------------------------------------------------------------------
# 3. Encoder-only inference util ---------------------------------
# ------------------------------------------------------------------
@spaces.GPU
def encode_and_trace(text: str, selected_roles: list[str]):
with torch.no_grad():
batch = tokenizer(text, return_tensors="pt").to("cuda")
ids, mask = batch.input_ids, batch.attention_mask
x = emb_drop(emb_ln(embeddings(ids)))
ext_mask = full_model.bert.get_extended_attention_mask(mask, x.shape[:-1])
enc = encoder(x, attention_mask=ext_mask) # (1, S, H)
sel_ids = {tokenizer.convert_tokens_to_ids(t) for t in selected_roles}
flags = torch.tensor([tid in sel_ids for tid in ids[0].tolist()],
device=enc.device)
found = [tokenizer.convert_ids_to_tokens([tid])[0]
for tid in ids[0].tolist() if tid in sel_ids]
if flags.any():
vec = enc[0][flags].mean(0)
norm = f"{vec.norm().item():.4f}"
else:
norm = "0.0000"
return {
"Symbolic Tokens": ", ".join(found) or "(none)",
"Embedding Norm": norm,
"Symbolic Token Count": int(flags.sum().item()),
}
# ------------------------------------------------------------------
# 4. Gradio UI ----------------------------------------------------
# ------------------------------------------------------------------
def build_interface():
with gr.Blocks(title="π§ Symbolic Encoder Inspector") as demo:
gr.Markdown(
"## π§ Symbolic Encoder Inspector\n"
"Paste some text containing the special `<role>` tokens and "
"inspect their encoder representations."
)
with gr.Row():
with gr.Column():
txt = gr.Textbox(
label="Input with Symbolic Tokens",
placeholder="Example: A <subject> wearing <upper_body_clothing> β¦",
lines=3,
)
roles = gr.CheckboxGroup(
choices=SYMBOLIC_ROLES,
label="Trace these symbolic roles",
)
btn = gr.Button("Encode & Trace")
with gr.Column():
out_tok = gr.Textbox(label="Symbolic Tokens Found")
out_norm = gr.Textbox(label="Mean Norm")
out_cnt = gr.Textbox(label="Token Count")
btn.click(encode_and_trace, [txt, roles], [out_tok, out_norm, out_cnt])
return demo
if __name__ == "__main__":
build_interface().launch()
|