File size: 7,734 Bytes
5e20a2a
 
fd4a12a
 
aa28bbb
872b08b
fd4a12a
0a14990
 
81a0ae4
5e20a2a
096fe3a
872b08b
5e20a2a
096fe3a
fd4a12a
5e20a2a
fd4a12a
5e20a2a
fd4a12a
 
 
 
 
 
5e20a2a
fd4a12a
 
 
5e20a2a
fd4a12a
 
0a14990
fd4a12a
 
 
9a08859
 
fd4a12a
 
096fe3a
535151e
fd4a12a
 
 
 
 
0a14990
5e20a2a
fd4a12a
096fe3a
785df91
 
 
 
 
872b08b
785df91
fd4a12a
 
 
5e20a2a
fd4a12a
 
5e20a2a
096fe3a
 
fd4a12a
 
 
5e20a2a
fd4a12a
5e20a2a
fd4a12a
 
 
 
5e20a2a
fd4a12a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaae56c
f22905a
aaae56c
f22905a
aaae56c
f22905a
aaae56c
 
 
 
f22905a
aaae56c
 
 
 
 
 
 
f22905a
aaae56c
 
 
f22905a
aaae56c
 
 
 
 
 
fd4a12a
f22905a
 
aaae56c
 
f22905a
 
 
 
aaae56c
 
 
f22905a
aaae56c
f22905a
 
fd4a12a
aaae56c
fd4a12a
 
 
 
 
 
 
 
 
 
 
 
 
0a14990
da8b548
096fe3a
fd4a12a
5e20a2a
096fe3a
fd4a12a
5e20a2a
535151e
 
fd4a12a
 
 
 
0a14990
fd4a12a
535151e
fd4a12a
 
 
872b08b
fd4a12a
535151e
ea2994b
5e20a2a
fd4a12a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# app.py – encoder-only demo for bert-beatrix-2048
# launch:  python app.py
# -----------------------------------------------
import json, re, sys, math
from pathlib import Path, PurePosixPath

import torch, torch.nn.functional as F
import gradio as gr
import spaces
from huggingface_hub import snapshot_download

from bert_handler import create_handler_from_checkpoint


# ------------------------------------------------------------------
# 0. Download & patch HF checkpoint --------------------------------
REPO_ID   = "AbstractPhil/bert-beatrix-2048"
LOCAL_CKPT = "bert-beatrix-2048"

snapshot_download(
    repo_id=REPO_ID,
    revision="main",
    local_dir=LOCAL_CKPT,
    local_dir_use_symlinks=False,
)

# → strip repo prefix in auto_map (one-time)
cfg_path = Path(LOCAL_CKPT) / "config.json"
with cfg_path.open() as f: cfg = json.load(f)

amap = cfg.get("auto_map", {})
for k,v in amap.items():
    if "--" in v:
        amap[k] = PurePosixPath(v.split("--",1)[1]).as_posix()
cfg["auto_map"] = amap
with cfg_path.open("w") as f: json.dump(cfg,f,indent=2)

# ------------------------------------------------------------------
# 1.  Load model & components --------------------------------------
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
full_model = full_model.eval().cuda()

encoder    = full_model.bert.encoder
embeddings = full_model.bert.embeddings
emb_ln     = full_model.bert.emb_ln
emb_drop   = full_model.bert.emb_drop
mlm_head   = full_model.cls          # prediction head

# ------------------------------------------------------------------
# 2. Symbolic roles -------------------------------------------------
SYMBOLIC_ROLES = [
    "<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
    "<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
    "<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
    "<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
    "<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
    "<fabric>", "<jewelry>",
]
if any(tokenizer.convert_tokens_to_ids(t)==tokenizer.unk_token_id
       for t in SYMBOLIC_ROLES):
    sys.exit("❌ tokenizer missing special tokens")

# Quick helpers
MASK = tokenizer.mask_token


# ------------------------------------------------------------------
# 3.  Encoder-plus-MLM logic ---------------------------------------
def cosine(a,b):
    return torch.nn.functional.cosine_similarity(a,b,dim=-1)

def pool_accuracy(ids, logits, pool_mask):
    """
    ids     : (S,)  gold token ids
    logits  : (S,V) MLM logits
    pool_mask : bool (S,)  which tokens belong to the candidate pool
    returns accuracy over masked positions only (if none, return 0)
    """
    idx = pool_mask.nonzero(as_tuple=False).flatten()
    if idx.numel()==0: return 0.0
    preds = logits.argmax(-1)[idx]
    gold  = ids[idx]
    return (preds==gold).float().mean().item()


@spaces.GPU
def encode_and_trace(text, selected_roles):
    # if user unchecked everything we treat as "all"
    if not selected_roles:
        selected_roles = SYMBOLIC_ROLES
    sel_ids = {tokenizer.convert_tokens_to_ids(t) for t in selected_roles}

    # ---- Tokenise & encode once ----
    batch = tokenizer(text, return_tensors="pt").to("cuda")
    ids, att = batch.input_ids, batch.attention_mask
    x = emb_drop(emb_ln(embeddings(ids)))
    ext = full_model.bert.get_extended_attention_mask(att, x.shape[:-1])
    enc = encoder(x, attention_mask=ext)[0, :, :]      # (S,H)

    # ---- compute max-cos per token (F-0/F-1) ----
    role_mat = embeddings.word_embeddings(
        torch.tensor(sorted(sel_ids), device=enc.device)
    )                          # (R,H)
    cos = cosine(enc.unsqueeze(1), role_mat.unsqueeze(0))  # (S,R)
    maxcos, argrole = cos.max(-1)                          # (S,)

    # ---- split tokens into High / Low half (F-2) ----
    S = len(ids[0])
    sort_idx = maxcos.argsort(descending=True)
    hi_idx   = sort_idx[: S//2]
    lo_idx   = sort_idx[S//2:]

    # container for summary text
    report_lines = []
    
    # ------------------------------------------------------------------
    # Greedy pool helper  – tensor-safe version
    # ------------------------------------------------------------------
    def greedy_pool(index_tensor: torch.Tensor, which: str):
        """
        index_tensor – 1-D tensor of token indices (already on CUDA)
        which        – "low"  → walk upward
                       "high" → walk downward
        Returns (best_pool:list[int], best_acc:float)
        """
        # ---- make everything vanilla Python ints ---------------------
        indices = index_tensor.tolist()                # e.g. [7, 10, 13, …]
        if which == "high":
            indices = indices[::-1]                    # reverse for top-down
    
        best_pool: list[int] = []
        best_acc  = 0.0
    
        for i in range(0, len(indices), 2):            # 2 at a time
            cand   = indices[i : i + 2]                # plain list[int]
            trial  = best_pool + cand                  # grow pool
    
            # ---- build masked input ----------------------------------
            mask_flags  = torch.ones_like(ids).bool()  # mask everything
            mask_flags[0, trial] = False               # …except the pool
            masked_ids  = ids.where(~mask_flags, mask_token_id)
    
            # ---- second forward-pass ---------------------------------
            with torch.no_grad():
                x_m   = emb_drop(emb_ln(embeddings(masked_ids)))
                ext_m = full_model.bert.get_extended_attention_mask(mask, x_m.shape[:-1])
                enc_m = encoder(x_m, attention_mask=ext_m)
                logits = mlm_head(enc_m)[0]            # (S, V)
    
            pred = logits.argmax(-1)
            corr = (pred[mask_flags] == ids[mask_flags]).float().mean().item()
    
            if corr > best_acc:
                best_acc  = corr
                best_pool = trial                      # accept improvement
            if best_acc >= 0.50:
                break                                  # early exit
    
        return best_pool, best_acc


    pool_lo, acc_lo = greedy_pool(lo_idx, "low")
    pool_hi, acc_hi = greedy_pool(hi_idx, "high")

    # ---- package textual result ----
    res_json = {
        "Low-pool tokens": tokenizer.decode(ids[0, pool_lo]),
        "Low accuracy":    f"{acc_lo:.2f}",
        "High-pool tokens":tokenizer.decode(ids[0, pool_hi]),
        "High accuracy":   f"{acc_hi:.2f}",
        "Trace": "\n".join(report_lines)
    }
    # three outputs expected by UI
    return json.dumps(res_json, indent=2), f"{maxcos.max():.4f}", len(selected_roles)


# ------------------------------------------------------------------
# 4.  Gradio UI -----------------------------------------------------
def build_interface():
    with gr.Blocks(title="🧠 Symbolic Encoder Inspector") as demo:
        gr.Markdown("## 🧠 Symbolic Encoder Inspector")

        with gr.Row():
            with gr.Column():
                txt  = gr.Textbox(label="Prompt", lines=3)
                roles= gr.CheckboxGroup(
                    choices=SYMBOLIC_ROLES, label="Roles",
                    value=SYMBOLIC_ROLES   # pre-checked
                )
                btn  = gr.Button("Run")
            with gr.Column():
                out_json = gr.Textbox(label="Result JSON")
                out_max  = gr.Textbox(label="Max cos")
                out_cnt  = gr.Textbox(label="# roles")

        btn.click(encode_and_trace, [txt,roles], [out_json,out_max,out_cnt])
    return demo


if __name__=="__main__":
    build_interface().launch()