Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,957 Bytes
aa28bbb 872b08b 81a0ae4 535151e aa28bbb 81a0ae4 872b08b 096fe3a 872b08b 535151e 096fe3a aa28bbb 096fe3a aa28bbb 872b08b 81a0ae4 aa28bbb 9a08859 81a0ae4 aa28bbb 872b08b 9a08859 415afa1 9a08859 aa28bbb 9a08859 415afa1 9a08859 415afa1 872b08b 9a08859 aa28bbb 9a08859 aa28bbb 9a08859 aa28bbb 096fe3a 535151e 096fe3a 8a2e372 872b08b 096fe3a aa28bbb 096fe3a 785df91 872b08b 785df91 aa28bbb 096fe3a 872b08b 096fe3a aa28bbb 096fe3a 415afa1 aa28bbb 415afa1 096fe3a aa28bbb 096fe3a aa28bbb b60c583 aa28bbb 096fe3a 872b08b 096fe3a 872b08b 096fe3a 785df91 096fe3a 872b08b aa28bbb 872b08b 535151e aa28bbb 535151e aa28bbb 872b08b 535151e ea2994b 872b08b ea2994b 81a0ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# app.py – encoder-only demo for bert-beatrix-2048 + role-probe
# ------------------------------------------------------------
# launch: python app.py
# (gradio UI appears at http://localhost:7860)
import json, sys
from pathlib import Path, PurePosixPath
import gradio as gr
import spaces
import torch
import torch.nn.functional as F
from huggingface_hub import snapshot_download
from bert_handler import create_handler_from_checkpoint
# ------------------------------------------------------------------
# 0. Download & patch config.json --------------------------------
# ------------------------------------------------------------------
REPO_ID = "AbstractPhil/bert-beatrix-2048"
LOCAL_DIR = "bert-beatrix-2048" # local cache dir
snapshot_download(
repo_id=REPO_ID,
revision="main",
local_dir=LOCAL_DIR,
local_dir_use_symlinks=False,
)
cfg_path = Path(LOCAL_DIR) / "config.json"
with cfg_path.open() as f:
cfg = json.load(f)
auto_map = cfg.get("auto_map", {})
patched = False
for k, v in auto_map.items():
if "--" in v: # e.g. "repo--module.Class"
auto_map[k] = PurePosixPath(v.split("--", 1)[1]).as_posix()
patched = True
if patched:
with cfg_path.open("w") as f:
json.dump(cfg, f, indent=2)
print("🛠️ Patched config.json → auto_map fixed.")
# ------------------------------------------------------------------
# 1. Model / tokenizer -------------------------------------------
# ------------------------------------------------------------------
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_DIR)
full_model = full_model.eval().cuda()
encoder = full_model.bert.encoder
embeddings = full_model.bert.embeddings
emb_ln = full_model.bert.emb_ln
emb_drop = full_model.bert.emb_drop
# ------------------------------------------------------------------
# 2. Symbolic token set ------------------------------------------
# ------------------------------------------------------------------
SYMBOLIC_ROLES = [
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
"<fabric>", "<jewelry>",
]
ROLE_ID = {tok: tokenizer.convert_tokens_to_ids(tok) for tok in SYMBOLIC_ROLES}
missing = [tok for tok, tid in ROLE_ID.items() if tid == tokenizer.unk_token_id]
if missing:
sys.exit(f"❌ Tokenizer is missing {missing}")
# ------------------------------------------------------------------
# 3. Encoder-only + role-similarity probe ------------------------
# ------------------------------------------------------------------
@spaces.GPU
def encode_and_trace(text: str, selected_roles: list[str]):
"""
For each *selected* role:
• find the contextual token whose hidden state is most similar to that
role’s own embedding (cosine similarity)
• return “role → token (sim)”, using tokens even when the prompt
contained no <role> markers at all.
Also keeps the older diagnostics.
"""
with torch.no_grad():
batch = tokenizer(text, return_tensors="pt").to("cuda")
ids, mask = batch.input_ids, batch.attention_mask # (1, S)
# ---------- encoder ----------
x = emb_drop(emb_ln(embeddings(ids)))
msk = full_model.bert.get_extended_attention_mask(mask, x.shape[:-1])
h = encoder(x, attention_mask=msk).squeeze(0) # (S, H)
# L2-normalise hidden states once
h_norm = F.normalize(h, dim=-1) # (S, H)
# ---------- probe each selected role -----------------------
matches = []
for role in selected_roles:
role_vec = embeddings.word_embeddings.weight[ROLE_ID[role]].to(h.device)
role_vec = F.normalize(role_vec, dim=-1) # (H)
sims = (h_norm @ role_vec) # (S)
best_idx = int(sims.argmax().item())
best_sim = float(sims[best_idx])
match_tok = tokenizer.convert_ids_to_tokens(int(ids[0, best_idx]))
matches.append(f"{role} → {match_tok} ({best_sim:.2f})")
match_str = ", ".join(matches) if matches else "(no roles selected)"
# ---------- string-match diagnostics -----------------------
present = [tok for tok_id, tok in zip(ids[0].tolist(),
tokenizer.convert_ids_to_tokens(ids[0]))
if tok in selected_roles]
present_str = ", ".join(present) or "(none)"
count = len(present)
# ---------- hidden-state norm of *explicit* role tokens ----
if count:
exp_mask = torch.tensor([tid in ROLE_ID.values() for tid in ids[0]], device=h.device)
norm_val = f"{h[exp_mask].mean(0).norm().item():.4f}"
else:
norm_val = "0.0000"
return present_str, match_str, norm_val, count
# ------------------------------------------------------------------
# 4. Gradio UI ----------------------------------------------------
# ------------------------------------------------------------------
def build_interface():
with gr.Blocks(title="🧠 Symbolic Encoder Inspector") as demo:
gr.Markdown(
"## 🧠 Symbolic Encoder Inspector \n"
"Select one or more symbolic *roles* on the left. "
"The tool shows which regular tokens (if any) the model thinks "
"best fit each role — even when your text doesn’t contain the "
"explicit `<role>` marker."
)
with gr.Row():
with gr.Column():
txt = gr.Textbox(
label="Input text",
lines=3,
placeholder="Example: A small child in bright red boots jumps over a muddy puddle…",
)
roles = gr.CheckboxGroup(
choices=SYMBOLIC_ROLES,
label="Roles to probe",
)
btn = gr.Button("Run encoder probe")
with gr.Column():
out_present = gr.Textbox(label="Explicit role tokens found")
out_match = gr.Textbox(label="Role → Best-Match Token (cos θ)")
out_norm = gr.Textbox(label="Mean hidden-state norm (explicit)")
out_count = gr.Textbox(label="# explicit role tokens")
btn.click(
encode_and_trace,
inputs=[txt, roles],
outputs=[out_present, out_match, out_norm, out_count],
)
return demo
if __name__ == "__main__":
build_interface().launch()
|