File size: 2,604 Bytes
9524ef8
 
 
 
 
 
 
 
 
2bb9b8c
9524ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb9b8c
9524ef8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from tensorflow import keras
import os
import soundfile as sf
import numpy as np
import librosa
import gradio as gr
import seaborn as sns
import pandas as pd
import plotly.express as px
model = keras.models.load_model('emotion.h5')
labels = ['Angry', 'Disgusted', 'Fearful', 'Happy', 'Neutral', 'Sad', 'Suprised']
# def load()

def predict(audio):
    wave, sr = librosa.load(audio, sr=None)
    segment_dur_secs = 3  
    segment_length = sr * segment_dur_secs
    num_sections = int(np.ceil(len(wave) / segment_length))
    split = []
    paths =[]
    for i in range(num_sections):
        t = wave[i * segment_length: (i + 1) * segment_length]
        split.append(t)
        
    out_dir = ('audio_data/splits/')
    os.makedirs(out_dir, exist_ok=True)
    for i in range(num_sections):
        recording_name = os.path.basename(audio[:-4])
        out_file = f"{recording_name}_{str(i)}.wav"
        sf.write(os.path.join(out_dir, out_file), split[i], sr)
        paths.append(os.path.join(out_dir, out_file))
        
            
    predicted_features = pd.DataFrame(columns=['features'])
    counter=0
    for path in paths:
        X, sample_rate = librosa.load(path
                                      ,duration=2.5
                                      ,sr=44100
                                      ,offset=0.5
                                     )
        sample_rate = np.array(sample_rate)
        mfccs = np.mean(librosa.feature.mfcc(y=X, 
                                            sr=sample_rate, 
                                            n_mfcc=13),
                        axis=0)
        predicted_features.loc[counter] = [mfccs]
        counter=counter+1
    predicted_features = pd.DataFrame(predicted_features['features'].values.tolist())
    predicted_features.dropna(inplace=True)
    preds = model.predict(predicted_features)

    preds=preds.argmax(axis=1)
    df_preds = pd.DataFrame(preds,columns = ['prediction'])
    emotions = []
    for i in df_preds['prediction']:
        emotion = labels[int(i)]
        emotions.append(emotion)
    df_preds['emotion'] = emotions
    df_preds = df_preds.reset_index()
    fig = px.line(df_preds, x="index", y="emotion", title='Life expectancy in Canada')
    return fig

outputs = gr.Plot()
title = "Emotion recognition"
description = "This model can shows how speaker emotion changes over the speech"

infr = gr.Interface(fn=predict,
                    inputs=gr.Audio(type="filepath",),
                    outputs=outputs,
                    title=title,description=description,interpretation='default',)
infr.launch()