Abduhoshim commited on
Commit
9524ef8
·
1 Parent(s): 49e0159

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tensorflow import keras
2
+ import os
3
+ import soundfile as sf
4
+ import numpy as np
5
+ import librosa
6
+ import gradio as gr
7
+ import seaborn as sns
8
+ import pandas as pd
9
+ import plotly.express as px
10
+ model = keras.models.load_model('/kaggle/input/emotions/emotion (1).h5')
11
+ labels = ['Angry', 'Disgusted', 'Fearful', 'Happy', 'Neutral', 'Sad', 'Suprised']
12
+ # def load()
13
+
14
+ def predict(audio):
15
+ # audio_dir = ('/kaggle/input/sample-audios/')
16
+ # audio = os.path.join(audio_dir,audio_link)
17
+ wave, sr = librosa.load(audio, sr=None)
18
+ segment_dur_secs = 3
19
+ segment_length = sr * segment_dur_secs
20
+ num_sections = int(np.ceil(len(wave) / segment_length))
21
+ split = []
22
+ paths =[]
23
+ for i in range(num_sections):
24
+ t = wave[i * segment_length: (i + 1) * segment_length]
25
+ split.append(t)
26
+
27
+ out_dir = ('audio_data/splits/')
28
+ os.makedirs(out_dir, exist_ok=True)
29
+ for i in range(num_sections):
30
+ recording_name = os.path.basename(audio[:-4])
31
+ out_file = f"{recording_name}_{str(i)}.wav"
32
+ sf.write(os.path.join(out_dir, out_file), split[i], sr)
33
+ paths.append(os.path.join(out_dir, out_file))
34
+
35
+
36
+ predicted_features = pd.DataFrame(columns=['features'])
37
+ counter=0
38
+ for path in paths:
39
+ X, sample_rate = librosa.load(path
40
+ ,duration=2.5
41
+ ,sr=44100
42
+ ,offset=0.5
43
+ )
44
+ sample_rate = np.array(sample_rate)
45
+
46
+ # mean as the feature. Could do min and max etc as well.
47
+ mfccs = np.mean(librosa.feature.mfcc(y=X,
48
+ sr=sample_rate,
49
+ n_mfcc=13),
50
+ axis=0)
51
+ predicted_features.loc[counter] = [mfccs]
52
+ counter=counter+1
53
+ predicted_features = pd.DataFrame(predicted_features['features'].values.tolist())
54
+ predicted_features.dropna(inplace=True)
55
+ preds = model.predict(predicted_features)
56
+
57
+ preds=preds.argmax(axis=1)
58
+ df_preds = pd.DataFrame(preds,columns = ['prediction'])
59
+ emotions = []
60
+ for i in df_preds['prediction']:
61
+ emotion = labels[int(i)]
62
+ emotions.append(emotion)
63
+ df_preds['emotion'] = emotions
64
+ df_preds = df_preds.reset_index()
65
+ import plotly.io as pio
66
+ fig = px.line(df_preds, x="index", y="emotion", title='Life expectancy in Canada')
67
+ # plt = sns.lineplot(df_preds,x='index',y='emotion');
68
+ # plt.set_xlabel('samples(each in 3s interval)');
69
+ return fig
70
+
71
+ # outputs = gr.Plot()
72
+ title = "Emotion recognition"
73
+ description = "This model can shows how speaker emotion changes over the speech"
74
+
75
+ infr = gr.Interface(fn=predict,
76
+ inputs=gr.Audio(type="filepath",),
77
+ outputs=outputs,
78
+ title=title,description=description,interpretation='default',)
79
+ infr.launch()