Abduhoshim commited on
Commit
2bb9b8c
·
1 Parent(s): 9524ef8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -8
app.py CHANGED
@@ -7,13 +7,11 @@ import gradio as gr
7
  import seaborn as sns
8
  import pandas as pd
9
  import plotly.express as px
10
- model = keras.models.load_model('/kaggle/input/emotions/emotion (1).h5')
11
  labels = ['Angry', 'Disgusted', 'Fearful', 'Happy', 'Neutral', 'Sad', 'Suprised']
12
  # def load()
13
 
14
  def predict(audio):
15
- # audio_dir = ('/kaggle/input/sample-audios/')
16
- # audio = os.path.join(audio_dir,audio_link)
17
  wave, sr = librosa.load(audio, sr=None)
18
  segment_dur_secs = 3
19
  segment_length = sr * segment_dur_secs
@@ -42,8 +40,6 @@ def predict(audio):
42
  ,offset=0.5
43
  )
44
  sample_rate = np.array(sample_rate)
45
-
46
- # mean as the feature. Could do min and max etc as well.
47
  mfccs = np.mean(librosa.feature.mfcc(y=X,
48
  sr=sample_rate,
49
  n_mfcc=13),
@@ -64,11 +60,9 @@ def predict(audio):
64
  df_preds = df_preds.reset_index()
65
  import plotly.io as pio
66
  fig = px.line(df_preds, x="index", y="emotion", title='Life expectancy in Canada')
67
- # plt = sns.lineplot(df_preds,x='index',y='emotion');
68
- # plt.set_xlabel('samples(each in 3s interval)');
69
  return fig
70
 
71
- # outputs = gr.Plot()
72
  title = "Emotion recognition"
73
  description = "This model can shows how speaker emotion changes over the speech"
74
 
 
7
  import seaborn as sns
8
  import pandas as pd
9
  import plotly.express as px
10
+ model = keras.models.load_model('emotion.h5')
11
  labels = ['Angry', 'Disgusted', 'Fearful', 'Happy', 'Neutral', 'Sad', 'Suprised']
12
  # def load()
13
 
14
  def predict(audio):
 
 
15
  wave, sr = librosa.load(audio, sr=None)
16
  segment_dur_secs = 3
17
  segment_length = sr * segment_dur_secs
 
40
  ,offset=0.5
41
  )
42
  sample_rate = np.array(sample_rate)
 
 
43
  mfccs = np.mean(librosa.feature.mfcc(y=X,
44
  sr=sample_rate,
45
  n_mfcc=13),
 
60
  df_preds = df_preds.reset_index()
61
  import plotly.io as pio
62
  fig = px.line(df_preds, x="index", y="emotion", title='Life expectancy in Canada')
 
 
63
  return fig
64
 
65
+ outputs = gr.Plot()
66
  title = "Emotion recognition"
67
  description = "This model can shows how speaker emotion changes over the speech"
68