Spaces:
Runtime error
Runtime error
File size: 2,813 Bytes
9524ef8 2bb9b8c 9524ef8 7f39b2d e7f35e2 9524ef8 2bb9b8c 9524ef8 e277959 9ea318f e7f35e2 9524ef8 4dc9da5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
from tensorflow import keras
import os
import soundfile as sf
import numpy as np
import librosa
import gradio as gr
import seaborn as sns
import pandas as pd
import plotly.express as px
model = keras.models.load_model('emotion.h5')
labels = ['Angry', 'Disgusted', 'Fearful', 'Happy', 'Neutral', 'Sad', 'Suprised']
def predict(audio):
wave, sr = librosa.load(audio, sr=None)
segment_dur_secs = 3
segment_length = sr * segment_dur_secs
num_sections = int(np.ceil(len(wave) / segment_length))
split = []
paths =[]
for i in range(num_sections):
t = wave[i * segment_length: (i + 1) * segment_length]
split.append(t)
out_dir = ('audio_data/splits/')
os.makedirs(out_dir, exist_ok=True)
for i in range(num_sections):
recording_name = os.path.basename(audio[:-4])
out_file = f"{recording_name}_{str(i)}.wav"
sf.write(os.path.join(out_dir, out_file), split[i], sr)
paths.append(os.path.join(out_dir, out_file))
predicted_features = pd.DataFrame(columns=['features'])
counter=0
for path in paths:
X, sample_rate = librosa.load(path
,duration=2.5
,sr=44100
,offset=0.5
)
sample_rate = np.array(sample_rate)
mfccs = np.mean(librosa.feature.mfcc(y=X,
sr=sample_rate,
n_mfcc=13),
axis=0)
predicted_features.loc[counter] = [mfccs]
counter=counter+1
predicted_features = pd.DataFrame(predicted_features['features'].values.tolist())
predicted_features.dropna(inplace=True)
preds = model.predict(predicted_features)
preds=preds.argmax(axis=1)
df_preds = pd.DataFrame(preds,columns = ['prediction'])
emotions = []
for i in df_preds['prediction']:
emotion = labels[int(i)]
emotions.append(emotion)
df_preds['emotion'] = emotions
df_preds = df_preds.reset_index()
fig = px.line(df_preds, x="index", y="emotion", title='How emotion change over speech')
fig.update_xaxes(title='The 3s intervals of speech')
return fig
outputs = gr.Plot()
title = "Emotion recognition"
description = "This model can shows how speaker emotion changes over the speech"
infr = gr.Interface(fn=predict,
inputs=gr.Audio(type="filepath"),
examples=['audio_samples/1.mp3','audio_samples/2.mp3','audio_samples/3.mp3','audio_samples/4.mp3'],
cache_examples=True,
outputs=outputs,
title=title,description=description,interpretation='default',)
infr.launch()
|