NORLIE JHON MALAGDAO
Update app.py
41cbe95 verified
raw
history blame
5.03 kB
import os
import zipfile
import gdown
import pathlib
import tensorflow as tf
from tensorflow.keras.preprocessing import image_dataset_from_directory
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization, Rescaling
from tensorflow.keras.callbacks import EarlyStopping, LearningRateScheduler
import gradio as gr
import numpy as np
# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'
# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)
# Directory to extract files
extracted_path = 'extracted_files'
# Verify if the downloaded file is a ZIP file and extract it
try:
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
zip_ref.extractall(extracted_path)
print("Extraction successful!")
except zipfile.BadZipFile:
print("Error: The downloaded file is not a valid ZIP file.")
# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)
# Convert the extracted directory path to a pathlib.Path object
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
# Set image dimensions and batch size
img_height, img_width = 180, 180
batch_size = 32
# Create training and validation datasets
train_ds = image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)
val_ds = image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size
)
class_names = train_ds.class_names
print(class_names)
data_augmentation = tf.keras.Sequential(
[
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
layers.RandomRotation(0.2),
layers.RandomZoom(0.2),
layers.RandomContrast(0.2),
layers.RandomBrightness(0.2),
]
)
num_classes = len(class_names)
model = Sequential()
model.add(data_augmentation)
model.add(Rescaling(1./255))
model.add(Conv2D(32, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Conv2D(64, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Conv2D(128, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Conv2D(256, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Conv2D(512, 3, padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax', name="outputs"))
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['accuracy'])
model.summary()
# Implement early stopping
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
# Learning rate scheduler
def scheduler(epoch, lr):
if epoch < 10:
return lr
else:
return lr * tf.math.exp(-0.1)
lr_scheduler = LearningRateScheduler(scheduler)
# Train the model
epochs = 30
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs,
callbacks=[early_stopping, lr_scheduler]
)
def predict_image(img):
img = np.array(img)
img_resized = tf.image.resize(img, (img_height, img_width))
img_4d = tf.expand_dims(img_resized, axis=0)
prediction = model.predict(img_4d)[0]
predicted_class = np.argmax(prediction)
predicted_label = class_names[predicted_class]
return {predicted_label: f"{float(prediction[predicted_class]):.2f}"}
image = gr.Image()
label = gr.Label(num_top_classes=1)
# Define custom CSS for background image
custom_css = """
body {
background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
background-size: cover;
background-repeat: no-repeat;
background-attachment: fixed;
color: white;
}
"""
gr.Interface(
fn=predict_image,
inputs=image,
outputs=label,
title="Welcome to Agricultural Pest Image Classification",
description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
css=custom_css
).launch(debug=True)