CbCR_to_Excel / reduce_and_convert_PDF.py
ADucatez's picture
Add of tabula functionality + exception management
71aaedb
raw
history blame
10.3 kB
import os
import shutil
import re
from PyPDF2 import PdfReader, PdfWriter
import pandas as pd
import camelot
import openpyxl
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import numbers
from openpyxl.worksheet.table import Table, TableStyleInfo
import tabula
def extract_pages(pdf_path, start_page, end_page, output_path):
reader = PdfReader(pdf_path)
writer = PdfWriter()
for page_num in range(start_page, end_page + 1):
if page_num <= len(reader.pages):
writer.add_page(reader.pages[page_num - 1])
with open(output_path, 'wb') as output_pdf_file:
writer.write(output_pdf_file)
def reduce_pdf(pdf_folder,reduced_pdf_folder):
if os.path.exists(reduced_pdf_folder):
shutil.rmtree(reduced_pdf_folder)
os.makedirs(reduced_pdf_folder)
for filename in os.listdir(pdf_folder):
if filename.endswith('.pdf'):
match = re.search(r'_CbCR_(\d+)(?:-(\d+))?', filename)
if match:
start_page = int(match.group(1))
end_page = int(match.group(2)) if match.group(2) else start_page
base_name = re.sub(r'_CbCR_\d+(?:-\d+)?\.pdf$', '_CbCR.pdf', filename)
pdf_path = os.path.join(pdf_folder, filename)
output_path = os.path.join(reduced_pdf_folder, base_name)
extract_pages(pdf_path, start_page, end_page, output_path)
print(f'Processed {filename} -> {base_name}')
def extract_tables_camelot_or_tabula(pdf_path):
try:
tables = camelot.read_pdf(pdf_path, pages='all', flavor='stream')
return [table.df for table in tables]
except Exception as e:
print(f"Camelot failed with error: {e}")
print("Trying with Tabula...")
dfs = tabula.read_pdf(pdf_path, pages='all', multiple_tables=True)
return dfs
def get_numeric_count(row):
# Get the number of numerical values in a row
return sum(1 for x in row if (pd.notna(pd.to_numeric(str(x).replace(",", "").strip('()'), errors='coerce')) or x in ['-','–']))
def convert_to_numeric(value):
if isinstance(value, str) and value.startswith('(') and value.endswith(')'):
value = '-' + value[1:-1]
if all(char.isdigit() or char in '-,.' for char in str(value)):
cleaned_value = pd.to_numeric(str(value).replace(',', ''), errors='coerce')
return cleaned_value
return value
def get_headers(dataframes):
# Get the dataframe columns name
# if len(dataframes) >= 2:
# df_for_columns_names = dataframes[1]
# else:
# df_for_columns_names = dataframes[0]
first_numeric_idx = None
order = list(range(1, len(dataframes))) + [0]
for k in order:
if first_numeric_idx is None:
df_for_columns_names = dataframes[k]
df_for_columns_names = df_for_columns_names.astype(str).where(pd.notna(df_for_columns_names), "")
for i, row in df_for_columns_names.iterrows():
numeric_count = get_numeric_count(row)
if numeric_count >= 2:
first_numeric_idx = i
break
if first_numeric_idx is not None:
break
new_header = [" ".join(filter(None, df_for_columns_names.iloc[:first_numeric_idx, col].values)) for col in range(df_for_columns_names.shape[1])]
return new_header
def clean_dataframe(df,header):
# Rule : if a row is not numerical, merge it with the next numerical one
if len(header) < len(df.columns):
df.columns = header + [f"Unnamed_{i}" for i in range(len(header), len(df.columns))]
elif len(header) > len(df.columns):
df.columns = header[:len(df.columns)]
else:
df.columns = header
first_numeric_idx = None
for i, row in df.iterrows():
numeric_count = get_numeric_count(row)
if numeric_count >= 2:
first_numeric_idx = i
break
df = df.iloc[first_numeric_idx:]
df = df.reset_index(drop=True)
merged_rows = []
buffer = None
for i in range(len(df)):
row = df.iloc[i]
numeric_count = get_numeric_count(row)
if numeric_count < 2:
if buffer is None:
buffer = list(df.iloc[i].copy())
else:
buffer = [
" ".join(filter(lambda x: x not in [None, "None", ""], [str(buffer[j]), str(df.iloc[i, j])]))
for j in range(df.shape[1])
]
merged_rows.append(i)
else:
if buffer is not None:
df.iloc[i] = [
" ".join(filter(lambda x: x not in [None, "None", ""], [str(buffer[j]), str(df.iloc[i, j])]))
for j in range(df.shape[1])
]
buffer = None
clean_df = df.drop(merged_rows).reset_index(drop=True)
return clean_df
def clean_and_concatenate_tables(dataframes):
for i in range(len(dataframes)):
df = dataframes[i]
row_counts = df.apply(lambda row: row.notna().sum() - (row.astype(str) == "").sum(), axis=1)
col_counts = df.apply(lambda col: col.notna().sum() - (col.astype(str) == "").sum(), axis=0)
dataframes[i] = df.loc[row_counts >= 1, col_counts >= 3].reset_index(drop = True)
new_header = get_headers(dataframes)
cleaned_dfs = []
for df in dataframes:
if len(df.columns) >= 3 :
cleaned_dfs.append(clean_dataframe(df,new_header))
cleaned_dfs = [df.reset_index(drop=True) for df in cleaned_dfs if isinstance(df, pd.DataFrame) and not df.empty]
if not cleaned_dfs:
raise ValueError("After cleaning, no valid dataframe left.")
for _, df in enumerate(cleaned_dfs):
if any(col == '' for col in df.columns): # Check if there are empty column names
df.columns = [f"col_{j}" if col == '' else col for j, col in enumerate(df.columns)]
concatenated_df = pd.concat(cleaned_dfs, ignore_index=True)
if concatenated_df.shape[0] <= 4 :
raise ValueError("Dataframe too small, probable mistake")
if concatenated_df.shape[1] <= 2 :
raise ValueError("Less than 3 columns, probable mistake")
print("Success of conversion : dataframe of shape ",concatenated_df.shape)
return concatenated_df
def convert_to_excel(reduced_pdf_folder, output_folder):
if os.path.exists(output_folder):
shutil.rmtree(output_folder)
os.makedirs(output_folder)
failed_folder = os.path.join(output_folder, "failed_to_convert")
if os.path.exists(failed_folder):
shutil.rmtree(failed_folder)
os.makedirs(failed_folder)
if os.path.exists("./log_errors.txt"):
os.remove("./log_errors.txt")
number_of_files = 0
number_of_fails = 0
for filename in os.listdir(reduced_pdf_folder):
if filename.endswith('.pdf'):
number_of_files += 1
print("Trying to convert :", filename, "to excel")
pdf_path = os.path.join(reduced_pdf_folder, filename)
try:
dataframes = extract_tables_camelot_or_tabula(pdf_path)
if not dataframes:
raise ValueError(f'No tables found in {filename}')
concatenated_df = clean_and_concatenate_tables(dataframes)
excel_path = os.path.join(output_folder, filename.replace('.pdf', '.xlsx'))
for col in concatenated_df.columns:
if any(str(cell).strip() and not str(cell).strip().startswith('(') for cell in concatenated_df[col]):
concatenated_df[col] = concatenated_df[col].apply(convert_to_numeric)
wb = openpyxl.Workbook()
ws = wb.active
percentage_cells = []
# Add the DataFrame data to the worksheet
for r_idx, r in enumerate(dataframe_to_rows(concatenated_df, index=False, header=True)):
ws.append(r)
for c_idx, value in enumerate(r):
if isinstance(value, str) and value.endswith('%'):
numeric_value = pd.to_numeric(value.strip('%'), errors='coerce') / 100
ws.cell(row=r_idx + 1, column=c_idx + 1, value=numeric_value)
percentage_cells.append((r_idx + 1, c_idx + 1))
tab = Table(displayName="Table1", ref=ws.dimensions)
style = TableStyleInfo(
name="TableStyleMedium9",
showFirstColumn=False,
showLastColumn=False,
showRowStripes=True,
showColumnStripes=True
)
tab.tableStyleInfo = style
ws.add_table(tab)
# Ajuster la largeur des colonnes
for column_cells in ws.columns:
length = min(max(len(str(cell.value)) for cell in column_cells), 30)
ws.column_dimensions[column_cells[0].column_letter].width = length + 2
for row, col in percentage_cells:
cell = ws.cell(row=row, column=col)
cell.number_format = numbers.BUILTIN_FORMATS[10]
wb.save(excel_path)
except Exception as e:
error_message = f"Error converting {filename}: {e}"
print(error_message)
number_of_fails += 1
shutil.copy(pdf_path, os.path.join(failed_folder, filename))
with open("./log_errors.txt", "a") as log_file:
log_file.write(error_message + "\n")
print("Number of files considered : ",number_of_files)
print("Number of success : ", number_of_files - number_of_fails)
print("Number of fails : ", number_of_fails)
shutil.make_archive(base_name="./output", format='zip', root_dir=output_folder)
def reduce_and_convert(input_folder):
reduced_pdf_folder = "./reduced_pdf"
output_folder = "./outputs"
reduce_pdf(input_folder,reduced_pdf_folder)
convert_to_excel(reduced_pdf_folder, output_folder)
if __name__ == "__main__":
input_folder = "../example_pdf"
reduce_and_convert(input_folder)